Faq по звуку

Чем опасны высокие звуки?

Уровни шума могут быть разными. Одни не превышают установленных законом норм и не мешают жизнедеятельности человека. В дневное время допускается более высокий уровень звуков, но и он имеет свои рамки в децибелах. Если норма превышена, то человек может ощущать нервозность, раздражительность. Затормаживаются реакции, уменьшается производительность и сообразительность.

Шум свыше 70 децибел может привести к ухудшению слуха. Особенно громкие звуки сильно влияют на здоровье малышей, инвалидов и престарелых людей. Согласно исследованиям влияния шума на человека, реакция нервной системы на повышение допустимых норм звукового фона начинается с 40 децибел. Сон нарушается уже при 35 дБ.

Сильные изменения нервной системы происходят при шуме в 70 децибел. В этом случае у человека могут возникнуть психические заболевания, ухудшиться слух и зрение и даже измениться в негативную сторону состав крови.

Например, в Германии почти двадцать процентов рабочих трудятся при шуме от 85 до 90 децибел. И это повлекло за собой участившиеся случаи тугоухости. Постоянный шум, превышающий норму, влечет за собой как минимум сонливость, усталость и раздражение.

Чувства в числах, звуках и образах:

• горе даёт вибрации — от 0,1 до 2 Гц;• страх — от 0,2 до 2,2 Гц;• обида — от 0,6 до 3,3 Гц;• раздражение — от 0,9 до 3,8 Гц;• возмущение — от 0,6 до 1,9 Гц;• вспыльчивость — 0,9 Гц;• вспышка ярости — 0,5 Гц;• гнев — 1,4 Гц;• гордыня — 0,8 Гц;• гордость (мания величия) — 3,1 Гц;• пренебрежение — 1,5 Гц;• превосходство — 1,9 Гц;• великодушие — 95 Гц;• благодарность (спасибо) — 45 Гц;• сердечная благодарность — от 140 Гц и выше;• ощущение единства с другими людьми — 144 Гц и выше;• сострадание — от 150 Гц и выше (а жалость только 3 Гц);• любовь (что называется, головой, то есть когда человек понимает, что любовь — это хорошее, светлое чувство и большая сила, но сердцем любить ещё не научился) вибрации — 50 Гц;• любовь, которую человек генерирует своим сердцем ко всем без исключения людям и всему живому, — от 150 Гц и выше;• любовь безусловная, жертвенная, вселенская — от 205 Гц и выше.
 

 
На протяжении тысячелетий частота вибраций (т.е. колебаний в секунду) нашей планеты составляла 7,6 Гц. Физики называют её частотой Шумана. Учёные часто сверяли с ней свои приборы.

Однако частота Шумана начала в последнее время резко возрастать.

  • январь 1995 — 7,80 Гц,
  • январь 2000 — 9,30 Гц,
  • январь 2007 — 9,80 Гц,
  • январь 2012 — 11,10 Гц,
  • январь 2013 — 13,74 Гц,
  • январь 2014 — 14,86 Гц,
  • февраль 2014 — 14,99 Гц,
  • март 2014 — 15,07 Гц,
  • апрель 2014 — 15,15 Гц.

Человек чувствовал себя комфортно в этих условиях, так как частота вибраций его энергетического поля имела такие же параметры  7,6-7,8 Гц. Даже если рассматривать ситуацию с точки зрения науки, то становится понятным, что человек, не повышающий свои вибрации, так или иначе вскоре  станет не жизнеспособным, и ему уже не помогут ни высокие должности, ни накопленный капитал.
Музыка — это вибрация, а значит, энергия.
 

 
Голос каждого человека имеет свою звуковую частоту, и наши мысли — это тоже волны, которые либо полны гармонии, либо — диссонанса.  
 
Каждый человек желает обладать внутренней гармонией. И важным шагом является осознание того, какую музыку мы слушаем и какое воздействие она оказывает на наш организм.
 
Настоящая музыка – это нечто неземное. Такую музыку, как и научные законы, не создают, а только открывают. Эта музыка существует вечно.
 
 
 
Подготовила: Natasha (Deutschland)
 
PS от А…
 

Зачем такие сложности?

Для применения децибелов и есть ряд причин:

  • Характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия («живая природа живёт по логарифму», см. Закон Вебера-Фехнера). Поэтому вполне естественно шкалы приборов и вообще шкалы единиц устанавливать именно в логарифмические, в том числе, используя децибелы.

  • Удобство отображения и анализа величин, изменяющейся в очень широких пределах (например, графическое отображение уровней сигнала звукозаписывающих и звуковоспроизводящих устройств)
  • Удобство согласования электрических и акустических величин (т.е. напряжений и SPL) и шкал их значений в звукозаписывающих и звуковоспроизводящих устройствах:

На звуковом оборудовании за точку отсчета обычно берется максимальный уровень громкости. Значения отображаются по отношению к максимальному уровню громкости, на который способно оборудование и это должны быть отрицательные величины, любое положительное значение означает «перегрузку» и искажения при воспроизведении или записи. В цифровой и аналоговой технике используются шкалы dBFS и dBu соответственно.

Представьте, что вы находитесь в очень тихом помещении и определили, что уровень звукового давления, создаваемого жужжанием мухи, составляет 40 дБ SPL. Из табл. 1 мы видим, что 40 дБ соответствует отношению звукового давления 100, то есть жужжание мухи создает звуковое давление в 100 раз большее, нежели 0 дБ SPL, соответствующих порогу слышимости. Величина порога слышимости, представленная относительным уровнем 0 дБ SPL, соответствует давлению 0,0002 дин на квадратный сантиметр (дин/см2) или 20 мкПа (1 дин/см2 = 0,1 Па). Дин есть единица измерения силы. Буквенное обозначение «SPL» после выражения в децибелах говорит о том, что уровень 0,0002 дин/см2 является референсным уровнем. Зная это, мы можем вычислить давление, создаваемое звуком жужжания мухи: оно составляет 0,02 дин/см2 (100×0,0002).

Две жужжащие мухи создают звуковое давление 46 дБ, то есть давление удваивается и уровень повышается на 6 дБ по сравнению с уровнем в 40 дБ, создаваемым одной мухой. Поскольку 40 дБ соответствуют давлению 0,02 дин/см2, то для 46 дБ уровень давления составит 0,04 дин/см2. В настоящем примере мы предполагаем, что мухи производят одинаковое звуковое давление и создаваемые ими звуки абсолютно синфазны. Фактически фазовый сдвиг между двумя звуками является произвольным, что приводит к увеличению уровня мощности звука на 3 децибела.

Теперь давайте рассмотрим другой пример. Предположим, что взлетающий реактивный самолет создает звуковое давление (SPL) 120 дБ. Обратившись к таблице 1, мы увидим, что 120 децибел соответствуют отношению давления, равному 1000000. Иными словами, самолет создает такое давление звука на наши барабанные перепонки, которое в миллион раз превышает порог слышимости. Умножив 1000000 на референсное давление (0,0002 дин/см2), мы узнаем, что уровень давления составляет 200 дин/см2 (0,002 х 1000000).

Если же добавить еще один взлетающий самолет, то, как мы уже знаем, количество децибел SPL увеличится со 120 дБ до 126 дБ, а давление — с 200 дин/см2 до 400 дин/см2 (при том условии, что оба самолета создают синфазные звуки равной громкости).

Разумеется, звук второго взлетающего самолета намного сильнее жужжания второй мухи. И тем не менее, в обоих случаях возрастание уровня звукового давления выражается одним и тем же значением — 6 дБ.

Количество каналов

Диапазон хороших колонок во многом зависит от количества каналов. Динамики разного размера способны воспроизводить только определенный диапазон частот. При этом наблюдается такая закономерность: чем больше диаметр, тем более басовито может «гудеть» такой излучатель.

Для того, чтобы передать звуковые частоты в полной мере, их разделяют по каналам, оснащая каждую несколькими динамиками под каждый диапазон. Сегодня самыми распространенными являются:

  • Двухканальные – один НЧ динамик, плюс излучатель для СЧ и ВЧ;
  • Трехканальные – по одному динамику на НЧ, СЧ и ВЧ.

Это касается не только стереофонических систем, но колонок 2.1. Разница лишь в том, что массивный НЧ динамик в последнем случае вынесен в отдельный корпус. Замечено, что звучит такая стереосистема лучше, так как «бочка» обычно располагается отдельно и не перебивает звук СЧ и ВЧ излучателей.Это же справедливо по отношению к колонкам 5 1. Конструкция фронтальных и тыльных колонок у них обычно не различается, поэтому они воспроизводят те же звуковые частоты.

Впрочем, на позиционирование источника звука при просмотре фильма на ПК или домашнем кинотеатре, это никак не влияет, а именно для этого и устанавливается такая акустика.

Как измерить шум в децибелах?

Допустимый уровень шума можно измерить самостоятельно с помощью специальных предметов – шумометров. Но стоят они очень дорого. И фиксация уровня звуков производится только специалистами, без заключения которых акты будут недействительными.

Как уже упомянуто выше, агрессивное шумовое воздействие иногда приводит к разрыву барабанных перепонок. По этой причине слух ухудшается, иногда до полной глухоты. Хотя барабанная перепонка может восстановиться, но процесс это очень долгий и зависит от тяжести повреждения.

По этой причине рекомендуется избегать длительного воздействия шума. Периодически нужно давать ушам отдохнуть: находиться в полной тишине, ездить в деревню (на дачу), не слушать музыку, телевизор отключать. Но в первую очередь желательно отказаться от всевозможных портативных проигрывателей музыки с наушниками.

Все это поможет сберечь наш драгоценный слух, который будет всегда служить верой и правдой. Кроме того, тишина способствует восстановлению барабанных перепонок после травмирования.

Автоматическая нормализация звука¶

Автоматическая нормализация звука позволяет гарантировать, что звук, поступивший в систему «извне» будет приведен к требуемому уровню и громкости.
Автоматическая нормализация происходит в двух направлениях

  • Входная нормализация: когда материал поступает внутрь системы Digispot.
    Параметры определяются узлом общих настроек Базовые установки\Автоматически нормализовать аудио\Нормализовывать входящие звуковые данные
    Входная нормализация выполняется в следующих случаях

    • Вставка/бросок из модуля файлы в любой другой модуль системы
    • Вставка/замена аудио из буфера обмена Windows
    • Импорт файла в МБД приложением DB_Import
    • При явном назначении файла на закладке Файл окна свойств элемента.
    • При назначении файла элементу МБД перетаскиванием (по умолчанию — с прижатым Ctrl).
  • когда материал покидает систему Digispot
    Параметры определяются узлом общих настроек Базовые установки\Автоматически нормализовать аудио\Параметры нормализации исходящего материала

    При публикации элемента МБД или расписания по умолчанию используются параметры выходной нормализации.

Кроме этого, существует возможность нормализовать элемент в процессе импорта к уровню, явно заданному в импортируемом файле и отличающемуся от указанных в общих настройках. Подробнее об этом:Установка_усиления_и_нормализация_при_импорте_в_расписание.

Материал, произведенный внутри системы, например, записанный в Трек 2 и сохраненный в МБД, автоматической нормализации не подвергается, т.к. предполагается, что необходимый уровень установлен средствами Трек2.
Также не происходит нормализации при перетаскивании/копировании-вставке материала внутри системы между различными модулями Папки/Расписание/МБД и пр.

При внесении материалов извне и автоматической нормализации нужно учитывать специфику добавляемого в систему материала, например, для подложек и других элементов оформления эфира автоматическая нормализация может установить неправильный уровень.

Максимальное звуковое давление

В технических параметрах пользовательской акустики (в отличие от профессиональных моделей) этот показатель указывается достаточно редко. Максимальное звуковое давление, естественно, также измеряется в децибелах и, очевидно, может быть косвенно вычислено из данных о чувствительности и максимальной мощности.

Сознательно не залезая в подробности и условия измерения этих параметров, скажем только, что для получения полной совокупности впечатлений от аудио, более-менее устоявшимся считается предел в 90 дБ — на этой громкости (фиксируемой, как правило, в метре от излучателя, в то время, как слушатели располагаются гораздо дальше), многие протоколы испытаний рекомендуют производить тестовое прослушивание. Для сравнения, комплекты дискотечной аппаратуры для залов работают на уровнях до 130 (топы) – 140 (субы) дБ. Это уровень, приближающийся к болевому порогу. Серьезная домашняя акустика, в среднем, выдает максимальные 100–110дБ, и, ради всего святого, пожалейте своих соседей!

Расчет площади, озвучиваемой одним громкоговорителем

Основанием для оценки величины озвучиваемой площади, является следующая установка:

Расчет будем вести из следующих допущений: Диаграмму направленности (излучения) громкоговорителя, можно представить в виде конуса (звукового поля сконцентрированного в конусе) с телесным углом в вершине конуса, равным ширине диаграммы направленности.

Площадь, озвучиваемая громкоговорителем – проекция звукового поля, ограниченного углом раскрыва на плоскость, проведенную параллельно полу на высоте 1,5м. По аналогии с эффективной дальностью: Эффективная площадь, озвучиваемая громкоговорителем – площадь звуковое давление в пределах которой не превышает значение N+15дБ (ф-ла 5).

ПРИМЕЧАНИЕ: Громкоговоритель излучает во всех направлениях, но мы будем опираться на входные данные – уровни звукового давления в пределах диаграммы направленности. Правильность данного подхода подтверждается статистической теорией.

Разобьем громкоговорители на 3 класса (типа):

  1. потолочные,
  2. настенные,
  3. рупорные.

Кодирование звука.

Компьютер является мощнейшим устройством для обработки различных типов информации, в том числе и звуковой. Но аналоговый звук непригоден для обработки на компьютере, его необходимо преобразовать в цифровой. Для этого используются специальные устройства — аналого-цифровые преобразователи или АЦП. В компьютере роль АЦП выполняет звуковая карта. Каким же образом АЦП преобразует сигнал из аналогового в цифровой вид? Давайте разберемся.

Пусть у нас есть источник звука с частотой 440Гц, пусть это будет гитара. Сначала звук нужно превратить в электрический сигнал. Для этого используем микрофон. На выходе микрофона мы получим электрический сигнал с частотой 440Гц. Графически он выглядит таким образом:

Следующая задача — преобразовать этот сигнал в цифровой вид, то есть в последовательность цифр. Для этого используется временная дискретизация — аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина интенсивности звука, которая зависит от амплитуды. Другими словами через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации. Частота дискретизации измеряется в Герцах. Соответственно, если мы будет измерять наш сигнал 100 раз в секунду, то частота дискретизации будет равна 100Гц.

Вот примеры некоторых используемых частот дискретизации звука:

  • 8 000 Гц — телефон, достаточно для речи;
  • 11 025 Гц;
  • 16 000 Гц;
  • 22 050 Гц — радио;
  • 32 000 Гц;
  • 44 100 Гц — используется в Audio CD;
  • 48 000 Гц — DVD, DAT;
  • 96 000 Гц — DVD-Audio (MLP 5.1);
  • 192 000 Гц — DVD-Audio (MLP 2.0);
  • 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;
  • 5,644,800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

Современные звуковые карты способны оцифровывать звук с частотой дискретизации 96Кгц и даже 192 кГц.

В итоге наш аналоговый сигнал превратится в цифровой, а график станет уже не гладким, а ступенчатым, дискретным:

Глубина кодирования звука — это количество возможных уровней сигнала. Другими словами глубина кодирования это точность измерения сигнала. Глубина кодирования измеряется в битах. Например, если количество возможных уровней сигнала равно 255, то глубина кодирования такого звука 8 бит. 16-битный звук уже позволяет работать с 65536 уровнями сигнала. Современные звуковые карты обеспечивают глубину кодирования в 16 и даже 24 бита, а это возможность кодирования 65536  и 16 777 216 различных уровней громкости соответственно.

Зная глубину кодирования, можно легко узнать количество уровней сигнала цифрового звука.  Для этого используем формулу:

N=2i,

где N — количество уровней сигнала, а i — глубина кодирования.

Например, мы знаем, что глубина кодирования звука 16 бит. Значит количество уровней цифрового сигнала равно 216=65536.

Чтобы определить глубину кодирования если известно количество возможных уровней применяют эту же формулу. Например, если известно, что сигнал имеет 256 уровней сигнала, то глубина кодирования составит 8 бит, так как 28=256.

Как понятно из данного вышеприведенного рисунка, чем чаще мы будем измерять уровень сигнала, т.е. чем выше частота дискретизации и чем точнее мы будем его измерять, тем более график цифрового сигнала будет похож на аналоговый график, соответственно, тем выше качество цифрового звука мы получим. И тем больший объем будет иметь файл.

Кроме того, мы рассматривали монофонический (одноканальный) звук, если же звук стереофонический, то размер файла увеличивается в 2 раза, так как он содержит 2 канала.

На примере конструкции целлюлозно­бумажного производства

В производственных структурах применяется то же самое уравнение. Собственная частота колебаний структуры определяется той же формулой:

ω = √K/m.

Например, рассмотрим конструкцию, используемую в целлюлозно­бумажном производстве. Данная структура имеет 10 м в длину и изготовлена из нержавеющей стали. На целлюлозно­бумажном комбинате рабочая частота составляет порядка 9 Гц. Если нормальная частота колебаний конструкции практически равна рабочей частоте, структура резонирует и разрушается. А главное, при этом серьезно пострадает предприятие, в которое вложен не один миллион долларов (рис. 5 и 6).

Рис. 5. Первая форма колебаний оборудования целлюлозно-бумажного комбината

Рис. 6. Вторая собственная форма колебаний оборудования целлюлозно-бумажного комбината

Параметры исходной конструкции давали первую форму колебаний при частоте 8,4 Гц, а это равносильно катастрофе. Рассматриваемая доска изготавливается из стальных пластин толщиной 9,5 мм, поэтому нашей первой мыслью в направлении оптимизации конструкции было простое увеличение толщины пластин. Мы прорабатывали данный вариант в течение нескольких дней, но при увеличении толщины пластин масса структуры также возрастала, повышаясь одновременно с жесткостью (см. приведенное выше уравнение). В результате всех этих усилий мы получили лишь незначительное улучшение (резонансная частота колебаний ~11 Гц) при толщине пластин 25 мм, но такое изменение конструкции стоило бы предприятию огромных денег.

На этом мы отказались от спешных попыток найти решение проблемы и задумались над тем, как формируется прочность в вытянутых тонких структурах. Мы поняли, что связь между нижней и верхней поверхностями доски очень слабая. Эта догадка привела нас к идее добавления диагональных стальных стержней, соединяющих верхнюю и нижнюю поверхности и позволивших бы нам сохранить толщину пластин 9,5 мм. Обновленная конструкция была протестирована на компьютере и показала первую собственную частоту колебаний 13 Гц. Теперь собственная частота колебаний изделия стала гораздо больше, чем рабочая частота комбината, резонанс стал невозможен, а система приобрела динамическую устойчивость. Кроме того, сохранение толщины пластин (9,5 вместо 25 мм) означало вдвое меньшую стоимость внесения изменений по сравнению с первым малоэффективным вариантом доработки конструкции.

Уровень звука¶

Под термином Уровень звука понимается уровень амплитуды звукового сигнала. Применительно к элементу расписания, элементу МБД или иному фрагменту звука речь идет о пиковом (максимальном) уровне сигнала на протяжении всего фрагмента. Данный уровень измеряется единицах dBFS и практически всегда является отрицательным числом. Этот уровень важен, т.к. от него зависит, насколько можно увеличить уровень, и следовательно, громкость звучания, не превысив теоретический порог 0 dBFS.

Для визуального наблюдения за текущим уровнем сигнала в реальном уровне предназначены индикаторы уровня сигнала.

Диаграмма изменения уровня сигнала во времени называется сигналограммой и используется для визуального отображения фонограмм и других звуковых элементов в различных окнах системы Digispot, например, окне редактирования склейки, при монтаже звука и пр.

В системе Digispot максимальный уровень элемента расписания и МБД рассчитывается однократно и запоминается для последующего использования, например, для нормализации.
Определение пикового сигнала совмещено с одновременным определением ее громкости, эти величины всегда рассчитываются совместно.

Единицы измерения громкости

Существуют различные способы количественного описания звуковых колебаний, использующиеся в разных областях.

Обычно используются следующие основные единицы измерения:

  • Интенсивность звука — скалярная физическая величина, характеризующая мощность, переносимую звуковой волной в направлении распространения. Единица измерения — ватт на квадратный метр (Вт/м2).
  • Звуковое давление — переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения — паскаль (Па).
  • Громкость звука (Уровень звукового давления, SPL или sound pressure level) — субъективное восприятие силы звука. Громкость главным образом зависит от звукового давления и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы.

Интенсивность звука и Звуковое давление находятся в квадратичной зависимости, точнее:

где I — интенсивность звука, Вт/м2; p — звуковое давление, Па; Zs — удельное акустическое сопротивление среды; t — усреднение по времени.

Громкость звука является относительной величиной и определяется как измеренное по относительной шкале значение звукового давления, отнесённое к опорному давлению PSPL = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц.

Единицей измерения громкости является децибел (дБ, dB) — относительная единица, подобная кратности («трёхкратное отличие») или, например, процентам.

Величина, выраженная в децибелах, равна десятичному логарифму отношения физической величины к одноимённой физической величине, принимаемой за исходную, умноженному на десять (умножение на 10 переводит белы в децибелы):

где AdB — величина в децибелах, A — измеренная физическая величина, A — величина, принятая за точку отсчета.

В приведенной формуле дБ используется для оценки отношения интенсивности звука, однако, чаще для этого используется звуковое давление.

Таким образом, когда мы говорим о громкости звука в децибелах, мы имеем в виду отношение значения его звукового давления к «нулевой» или «опорной» величине (условный 0 дБ), которая составляет 20 мкПа и соответствует стандартному порогу слышимости (порогу слышимости синусоидальной звуковой волны частотой 1 кГц).
В этом случае используется формула:

В основном формула аналогична приведенной выше, только в качества точки отсчета указано 20 мкПа, а вместо 10 логарифм умножен на 20 (т.е. на 10 и на 2). Это отражает уже упомянутую выше квадратичную зависимость силы звука и звукового давления.

Приведем некоторые соответствия значений в децибелах увеличению звукового давления относительно порога слышимости:

6 дБ → в 2 раза (lg(2) = 0,30102999566),
9,5 дБ → в 3 раза (lg(3)= 0,47712125472),
12 дБ → в 4 раза (lg(4)= 0,60205999132),
20 дБ → в 10 раз (lg(10)= 1).

Любое удвоение величины звукового давления выражается в увеличении его уровня на 6 дБ, как видно из следующей таблицы:

Отношение силы звука или электрической мощности
(«энергетические» величины)

Децибелы

Отношение звукового давления, напряжения или тока
(«амплитудные» величины)

Децибелы

1

1

2

3

2

6

3

4,8

3

9,5

4

6

4

12,0

5

7

5

14,0

6

7,8

6

15,6

7

8,5

7

16,9

8

9,0

8

18,1

9

9,5

9

19,1

10

10,0

10

20,0

100

20,0

100

40,0

1000

30,0

1000

60,0

10000

40,0

10000

80,0

100000

50,0

100000

100,0

1000000

60,0

1000000

120,0

См. также: Сравнительные шкалы для расчёта уровня цифрового звука

Следует иметь в виду, что в децибелах может выражаться не только SPL, но и, например, напряжение, а также, что могут использоваться различные опорные уровни или «точки отсчета», на что указывает соответствующая аббревиатура после dB: dBSPL, dBFS и т.д. Так например, часто используются:

  •  dBFS (от англ. Full Scale — «полная шкала») — опорное напряжение соответствует полной шкале прибора; например, «уровень записи составляет −6 dBFS». При этом максимально возможный уровень записи равен 0 dBFS.
  • dBSPL (от англ. Sound Pressure Level — «уровень звукового давления») — опорное звуковое давление 20 мкПа, соответствующее порогу слышимости; например, «громкость 100 dBSPL».
  • dBPa — опорное звуковое давление 1 Па, или 94 дБ звуковой шкалы громкости dBSPL; например, «для громкости 6 dBPa микшером установили +4 dBu, а регулятором записи −3 dBFS, искажения при этом составили −70 dBc»
    и т.д.
Ссылка на основную публикацию