Как,используя формулу давления рассчитать силу давления?

Молярная масса газа

Молярная масса — это масса в килограммах одного моля вещества. Поскольку в одном моле содержится одинаковое количество структурных единиц, формула молярной массы имеет такой вид:

M = κ × Mr

где k — коэффициент пропорциональности;

Mr — атомная масса вещества.

Молярная масса газа может быть рассчитана по уравнению Менделеева-Клапейрона:

pV = mRT / M,

из которой можно вывести:

M = mRT / pV

Таким образом, молярная масса газа прямо пропорциональна произведению массы газа на температуру и универсальную газовую постоянную и обратно пропорциональна произведению давления газа и его объема.

Внимание! Следует учесть, что молярная масса газа как элемента может отличаться от газа как вещества, например, молярная масса элемента кислорода (О) равна 16 г/моль, а масса кислорода как вещества (О2) равна 32 г/моль.

Основные положения МКТ.

Физика за 5 минут — молекулярная физика

Кристаллизация

Кристаллизация — это фазовый переход вещества из жидкого в твердое состояние, т.е. процесс, обратный плавлению. Процесс кристаллизации происходит с выделением теплоты, которую требуется отводить от вещества. Температура совпадает с точкой плавления, весь процесс описывается формулой:

Q = λm,

где Q — количество теплоты;

λ — теплота плавления;

M — масса.

Эта формула описывает как кристаллизацию, так и плавление, поскольку они, по сути, являются двумя сторонами одного процесса. Для того чтобы вещество кристаллизовалось, необходимо охладить его до температуры плавления, а затем отвести количество тепла, равное произведению массы на удельную теплоту плавления (λ). Во время кристаллизации температура не меняется.

Существует еще один вариант понимания этого термина — кристаллизация из перенасыщенных растворов. В этом случае причиной перехода становится не только достижение определенной температуры, но и степень насыщения раствора определенным веществом. На определенном этапе количество частиц растворенного вещества становится слишком большим, что вызывает образование мелких монокристалликов. Они присоединяют молекулы из раствора, производя послойный рост. В зависимости от условий роста кристаллы имеют различную форму.

Зависимость давления газа от объема

Убедимся в том, что молекулы газа действительно расположены достаточно далеко друг от друга, и поэтому газы хорошо сжимаемы.

Возьмем шприц и расположим его поршень приблизительно посередине цилиндра. Отверстие шприца соединим с трубкой, второй конец которой наглухо закрыт. Таким образом, некоторая порция воздуха будет заключена в цилиндре шприца под поршнем и в трубке (Рис. 3).

Рис. 3. В цилиндре под поршнем заключено некоторое количество воздуха

Теперь поставим на подвижный поршень шприца груз. Легко заметить, что поршень немного опустится. Это означает, что объем воздуха уменьшился (Рис. 4). Другими словами, газы (в нашем случае воздух) легко сжимаются. Таким образом, между молекулами газа имеются достаточно большие промежутки.

Рис. 4. Помещение груза на поршень вызывает уменьшение объема газа

С другой стороны, после установки груза поршень, немного опустившись, останавливается в новом положении равновесия. Это означает, что сила давления воздуха на поршень (направленная вверх) увеличивается и снова уравновешивает возросший вес поршня с грузом (направленный вниз)

А поскольку площадь поршня при этом остается неизменной, мы приходим к важному заключению

При уменьшении объема газа его давление увеличивается.

Будем помнить при этом, что масса газа и его температура в ходе опыта оставались неизменными.

Объяснить зависимость давления от объема можно следующим образом. При увеличении объема газа расстояние между его молекулами увеличивается. Каждой молекуле теперь нужно пройти большее расстояние от одного удара со стенкой сосуда до другого. Средняя скорость движения молекул остается неизменной (если температура газа не меняется). Следовательно, молекулы газа реже ударяются о стенки сосуда, а это приводит к уменьшению давления газа. И, наоборот, при уменьшении объема газа его молекулы чаще ударяются о стенки сосуда, и давление газа увеличивается (Рис. 5).

Рис. 5. При уменьшении объема газа расстояние между его молекулами уменьшается

Формула гидростатического давления

Как мы знаем, разные агрегатные состояния вещества, имеют разные физические свойства. Жидкости своими свойствами отличаются от твердых тел, а газы в свою очередь отличаются от них всех. Поэтому вполне логично, что способы определения давления для жидкостей, твердых тел и газов также будут разными. Так, например, формула давления воды (или гидростатического давления) будет иметь следующий вид:

P = p*g*h

Где маленькая p – плотность вещества, g – ускорение свободного падения, h – высота.

В частности эта формула объясняет, почему при погружении водолазов (или батискафа или подводной лодки) на глубину все больше возрастает давление окружающей воды. Также из этой формулы понятно, почему на предмет, погруженный в какой-нибудь кисель, будет воздействовать большее давление, чем на предмет, погруженный просто в воду, так как плотность киселя (p) выше, чем у воды, а чем выше плотность жидкости, тем выше ее гидростатическое давление.

Приведенная нами формула гидростатического давления справедлива не только для жидкостей, но и для газов. Поэтому поднимаясь высоко в горы (где воздух более разрежен, а значит меньшее давление), как и спускаясь в подводные глубины, человек, водолаз или альпинист должен пройти специальную адаптацию, привыкнуть к тому, что на него будет воздействовать другое давление.

Резкая смена давления может привести к кессоной болезни (в случае с водолазами) или к «горной» болезни (в случае с альпинистами). И «кесонка» и «горняшка», как их сленгово называют водолазы и альпинисты, вызвана резкой сменной давления окружающей среды. То есть, если не подготовленный человек начнет вдруг подниматься на Эверест, то он быстро словит «горняшку», а если этот же человек начнет опускаться на дно Мариинской впадины, то гарантировано получит «кесонку». В первом случае причиной будет не адаптация организма к пониженному давлению, а во втором – к повышенному.

Американские водолазы в декомпрессионой камере, призванной подготовить их к глубоководным погружениям и адаптировать организм к высокому давлению океанских глубин.

Парциальное давление. Закон Дальтона

На практике чаще всего нам приходится встречаться не с чистыми газами, а с их смесями. Мы дышим воздухом, являющимся смесью газов. Выхлопные газы автомобилей — тоже смесь. При сварке уже давно не применяется чистый углекислый газ. Вместо него также используют газовые смеси.

Газовой смесью называют смесь газов, не вступающих в химические реакции между собой.

Давление отдельного компонента газовой смеси называется парциальным давлением.

Если предположить, что все газы смеси являются идеальными газами, то давление смеси определяется законом Дальтона: «Давление смеси идеальных газов, не взаимодействующих химически, равно сумме парциальных давлений».

Его величина определяется по формуле:

Каждый газ в смеси создаёт парциальное давление. Его температура равна температуре смеси.

Давление газа можно изменить, меняя его плотность. Чем больше газа будет закачано в металлический баллон, тем больше в нём будет молекул, ударяющихся о стенки, и тем выше станет его давление. Соответственно, откачивая газ, мы разрежаем его, и давление снижается.

Но давление газа также можно изменить, изменив его объём или температуру, то есть, сжав газ. Сжатие проводят, воздействуя силой на газообразное тело. В результате такого воздействия уменьшается занимаемый им объём, повышается давление и температура.

Газ сжимается в цилиндре двигателя при движении поршня. На производстве высокое давление газа создают, сжимая его с помощью сложных устройств — компрессоров, которые способны создать давление до нескольких тысяч атмосфер.

  • Вперёд >

Зависимость давления газа от температуры

В предыдущих опытах температура газа оставалась неизменной, и мы изучали изменение давления вследствие изменения объема газа. Теперь рассмотрим случай, когда объем газа остается постоянным, а температура газа изменяется. Масса при этом также остается неизменной. Создать такие условия можно, поместив некоторое количество газа в цилиндр с поршнем и закрепив поршень (Рис. 6).

Рис. 6. Изменение температуры данной массы газа при неизменном объеме

Чем выше температура, тем быстрее движутся молекулы газа.

Следовательно,

— во-первых, чаще происходят удары молекул о стенки сосуда;

— во-вторых, средняя сила удара каждой молекулы о стенку становится больше.

Это приводит нас к еще одному важному заключению. При увеличении температуры газа его давление увеличивается

При увеличении температуры газа его давление увеличивается.

Будем помнить, что данное утверждение справедливо, если масса и объем газа в ходе изменения его температуры остаются неизменными.

Приборы для измерения давления

Разумеется, человечество изобрело многие приборы, позволяющие быстро и удобно измерять уровень давления. Для измерения давления окружающей среды, оно же атмосферное давление используют такой прибор как манометр или барометр.

Так выглядит классический барометр для измерения атмосферного давления.

Чтобы узнать артериальное давление у человека, часто служащее причиной недомоганий используется прибор известный большинству под названием неинвазивный тонометр. Таких приборов существует множество разновидностей.

Также биологи в своих исследованиях занимаются расчетами осмотического давления – это давление внутри и снаружи клетки. А метеорологи, в частности по перепадам давления в окружающей среде предсказывают нам погоду.

Общая формула давления

Из классического определения того, что такое давление можно вывести общую формулу для его расчета. Выглядеть она будет таким образом:

P = F/S

Где F – это сила давления, а S – площадь поверхности на которую она действует. То есть иными словами формула нахождения давления – это сила, воздействующая на определенную поверхность, разделенная на площадь этой самой поверхности.

Как видно из формулы, при расчете давления всегда действует следующий принцип: чем меньше пространство, на которое влияет сила, тем большее количество давящей силы на него приходится и наоборот.

Это можно проиллюстрировать простым жизненным примером: хлеб легче всего порезать острым ножом, потому что у острого ножа заточенное лезвие, то есть площадь поверхности S из формулы у него минимальна, а значит, давление ножа на хлеб будет максимально равно приложенной силе F того кто держит нож. А вот тупым ножом порезать хлеб уже сложнее, так как у его лезвия большая площадь поверхности S, и давление ножа на хлеб будет меньшим, и значит, чтобы отрезать себе кусок хлеба нужно приложить большее количество силы F.

Общая формула давления, по сути, отлично описывает формулу давления твердого тела.

Хранение и транспортировка газов

Зависимость давления газа от объема и температуры часто используется в технике и в быту. Если требуется перевезти значительное количество газа из одного места в другое, или когда газы необходимо длительно хранить, их помещают в специальные прочные металлические сосуды. Эти сосуды выдерживают высокие давления, поэтому с помощью специальных насосов (компрессоров) туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем (Рис. 7).

Рис. 7. Баллоны для хранения газов

Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать (например, держать под прямыми лучами солнца) или любым способом пытаться сделать в них отверстие даже после использования.

Применение закона на практике

Многие законы физики, в том числе и закон Паскаля, применяются на практике. Например, обычный водопровод не мог бы функционировать, если бы в нем не действовал данный закон. Ведь молекулы воды в трубе движутся хаотично и относительно свободно, а значит и давление, оказываемое на стенки водопровода везде одинаковое. Работа гидравлического пресса также основана на законах движения и равновесия жидкостей. Пресс представляет собой два соединенных между собой цилиндра с поршнями. Пространство под поршнями заполняют маслом. Если на меньший поршень площадью S2, действует сила F2, то на больший поршень площадью S1, действует сила F1.

Рис. 3. Гидравлический пресс

Также можно провести эксперимент с сырым и вареным яйцом. Если острым предметом, например, длинным гвоздем, проткнуть сначала одно, а потом другое, то результат будет разным. Крутое яйцо гвоздь пройдет насквозь, а сырое разлетится вдребезги, так как для сырого яйца будет действовать закон Паскаля, а для крутого нет.

Закон Паскаля гласит, что давление во всех точках покоящейся жидкости одинаково, то есть: F1/S1=F2/S2, откуда F2/F1=S2/S1.

Сила F2 во столько же раз больше силы F1, во сколько раз площадь большего поршня больше площади малого.

Что мы узнали?

Основной величиной закона Паскаля, который изучают в 7 классе, является давление, которое измеряется в Паскалях. В отличие от твердых тел газообразные и жидкие вещества давят на стенки сосуда, в котором они находятся одинаково. Причиной этому молекулы, которые движутся свободно и хаотично в разных направлениях.

Давление в жидкостях

Предыдущие рассуждения справедливы и для жидкостей. Но в них расстояние между молекулами меньше, поэтому при одинаковом объеме жидкость будет иметь большую массу. Рассмотрим столб воды в поле силы тяжести и разобьем его на некоторое количество малых слоев. Самый первый слой будет давить на все нижележащие с силой $F = \rho gV$.

Рис. 2. Давление столба жидкости.

Давление, зависящее от высоты столба жидкости, называют гидростатическим. Оно определяется формулой:

$p = \rho gh$, где h – высота столба. Она получается в результате деления выражения для F на площадь слоя.

В газах также существует гидростатическое давление. Например, на поверхность земли давит толща атмосферы.

Полное давление в жидкостях и газах будет складываться из давления, оказываемого сторонней силой и гидростатического. В земных условиях для жидкостей внешним давлением чаще всего выступает атмосферное. Для газов же необходимо добавить давление, создаваемое хаотическим движением молекул.

Важным является закон для жидкостей и газов, который устанавливает, что внешнее давление распространяется по всему объему вещества без изменения. Его называют законом Паскаля. Благодаря нему справедливо предыдущее утверждение о полном давлении.

Рис. 3. Закон Паскаля.

Анализ и примеры применения полученной формулы

Рассмотрим несколько примеров.

Возьмем два сосуда. В одном из них находится вода, а в другом – подсолнечное масло. Уровень жидкости в обоих сосудах одинаков. Одинаковым ли будет давление этих жидкостей на дно сосудов? Безусловно, нет. В формулу для расчета гидростатического давления входит плотность жидкости. Поскольку плотность подсолнечного масла меньше, чем плотность воды, а высота столба жидкостей одинакова, то масло будет оказывать на дно меньшее давление, чем вода (Рис. 2).

Рис. 2. Жидкости с различной плотностью при одной высоте столба оказывают на дно различные давления

Еще один пример. Имеются три различных по форме сосуда. В них до одного уровня налита одна и та же жидкость. Будет ли одинаковым давление на дно сосудов? Ведь масса, а значит, и вес жидкостей в сосудах различен. Да, давление будет одинаковым (Рис. 3). Ведь в формуле гидростатического давления нет никакого упоминания о форме сосуда, площади его дна и весе налитой в него жидкости. Давление определяется исключительно плотностью жидкости и высотой ее столба.

Рис. 3. Давление жидкости не зависит от формы сосуда

Давление в газах

Молекулы газа (как и жидкости) не связаны в жесткую структуру, а двигаются хаотично. Если ограничить жидкость или газ емкостью некоторого объема, то молекулы начнут ударятся о стенки емкости и создавать давление, определяемое формулой $P = {F \over S}$.

Очевидно, что молекулы обладают очень малой массой, поэтому сила их удара много меньше площади удара и, соответственно, давление, создаваемое одной молекулой также будет малым. Но вспомним, что при стандартных условиях в одном моле вещества содержится 6⋅1023 молекул. В сумме все молекулы создают ощутимое давление.

Рис. 1. Хаотическое движение молекул газа.

Теперь увеличим количество молекул, но объем оставим неизменным. Ударов о стенки станет больше, давление возрастет. Также давление будет увеличиваться, если скорость хаотического движения молекул возрастет, а скорость, как известно, зависит от температуры газа: $v = {\sqrt{3kT \over m}}$

Эти закономерности отражены в формуле для давления газа, выводимой в рамках молекулярно-кинетической теории: $p = nkT$, где n – концентрация, k – постоянная Больцмана и T – температура.

Вывод формулы для давления жидкости на дно сосуда

Для того чтобы упростить вывод формулы для расчета давления на дно и стенки сосуда, удобнее всего использовать сосуд в форме прямоугольного параллелепипеда (Рис. 1).

Рис. 1. Сосуд для расчета давления жидкости

Площадь дна этого сосуда – S, его высота – h. Предположим, что сосуд наполнен жидкостью на всю высоту h. Чтобы определить давление на дно, нужно силу, действующую на дно, разделить на площадь дна. В нашем случае сила – это вес жидкости P, находящейся в сосуде

Поскольку жидкость в сосуде неподвижна, ее вес равен силе тяжести, которую можно вычислить, если известна масса жидкости m

Напомним, что символом g обозначено ускорение свободного падения.

Для того чтобы найти массу жидкости, необходимо знать ее плотность ρ и объем V

Объем жидкости в сосуде мы получим, умножив площадь дна на высоту сосуда

Эти величины изначально известны. Если их по очереди подставить в приведенные выше формулы, то для вычисления давления получим следующее выражение:

В этом выражении числитель и знаменатель содержат одну и ту же величину S – площадь дна сосуда. Если на нее сократить, получится искомая формула для расчета давления жидкости на дно сосуда:

Итак, для нахождения давления необходимо умножить плотность жидкости на величину ускорения свободного падения и высоту столба жидкости.

Вывод уравнения Менделеева-Клапейрона

Давление идеального газа зависит от концентрации частиц и температуры тела:

n — концентрация частиц

k – константа Больцмана k = 1,38 · 10-23 [Дж/К]

Т – абсолютная температура, в кельвинах

Возьмем основное уравнение МКТ, выведенное через кинетическую энергию:

Подставим nkT вместо давления и выразим кинетическую энергию:

Концентрация частиц газа n равна:

N – число молекул газа в емкости объемом V . N также можно представить как произведение количества вещества ν и числа Авогадро NA:

Подставим эти величины в уравнение давления идеального газа (p=nkT):

Произведение числа Авогадро NA и константы Больцмана k дает универсальную газовую постоянную R, которая равна 8,31 [Дж/(моль · К)]. Используя это, упростим уравнение давления и получим искомое уравнение состояния идеального газа:

Учитывая, что количество вещества ν также можно определить, если известны масса вещества m и его молярная масса M:

можно привести уравнение к следующему виду:

Частными случаями уравнения являются газовые законы, описывающие изопроцессы в идеальных газах, т.е. процессы, при которых один из макропараметров (T, P, V) в закрытой изолированной системе постоянный. Всего этих частных случаев 3.

Закон Бойля-Мариотта — изотермический процесс

Проходит при постоянной температуре: T= const.

P·V = const, то есть для конкретного вещества произведение давления на объем остается постоянным:

P1·V1 = P2·V2.

Закон Гей-Люссака — изобарный процесс

Проходит при постоянном давлении: P = const.

V/T = const, то есть для конкретного вещества отношение объема и температуры остается постоянным:

V1/T1 = V2/T2.

Закон Шарля — изобарный процесс

Проходит при постоянном объеме: V = const.

P/T = const, то есть для конкретного вещества отношение давления и температуры остается постоянным:

P1/T1 = P2/T2.

Скорее всего, Вам будет интересно:

  • Основное уравнение молекулярно-кинетической теории (МКТ) с выводом
  • Основные положения молекулярно-кинетической теории (МКТ), формулы МКТ
  • Закон Кулона: формулировка, определение, формула
  • Средняя линия трапеции: чему равна, свойства, доказательство теоремы
  • Свойства вписанной в треугольник окружности
  • Плотность тока проводимости, смещения, насыщения: определение и формулы
  • Состав служебного программного обеспечения
  • Свойства прямоугольной трапеции
  • Как найти область определения функции онлайн
  • Первый признак равенства треугольников: формулировка и доказательство (7 класс)
Ссылка на основную публикацию