Мгновенное значение силы переменного тока частотой 50 гц равно 2 а для фазы n/4 рад. какова амплитуда силы тока? найдите

1 вариант

1. Конденсатор емкостью 250 мкФ включается в сеть пе­ременного тока. Определите емкостное сопротивление конденсатора при частоте 50 Гц.

2. Чему равен период собственных колебаний в колеба­тельном контуре, если индуктивность катушки равна 2,5 мГн, а емкость конденсатора 1,5 мкФ?

3. Напряжение меняется с течением времени по закону u = 40sin(10πt + π/6) В. Определите амплитуду, действующее значение, круговую частоту колебаний и началь­ную фазу колебаний напряжения.

4. Сколько оборотов в минуту должна совершать рамка из 20 витков проволоки размером 0,2 х 0,4 м в магнитном поле с индукцией 1 Тл, чтобы амплитуда ЭДС равнялась 500 В?

5. Напряжение в цепи изменяется по закону u = Umsin2π/Tt, причем амплитуда напряжения 200 В, а период 60 мс. Какое значение принимает напряжение через 10 мс?

6. Катушка индуктивностью 75 мГн последовательно с конденсатором включена в сеть переменного тока с на­пряжением 50 В и частотой 50 Гц. Чему равна емкость конденсатора при резонансе в полученной сети?

7. В колебательном контуре конденсатору сообщили за­ряд 1 мКл, после чего в контуре возникли затухающие электромагнитные колебания. Какое количество теплоты выделится к моменту, когда максимальное напряжение на конденсаторе станет меньше начального максималь­ного значения в 4 раза? Емкость конденсатора равна 10 мкФ.

Баланс мощностей

В соответствии с общепринятыми характеристиками, баланс в электрической цепи базируется на законе сохранения энергии, поэтому суммарные потребляемые и отдаваемые мощности должны быть равными.

При расчетах учитываются показатели эквивалентного сопротивления и знакомый большинству из курса физики закон Ома.

Допускаются небольшие расхождения в значениях, что обуславливается стандартными округлениями, осуществляемыми в процессе выполнения самостоятельных расчетов. Таким образом, вне зависимости от уровня сложности создаваемой цепи баланс обязательно должен сходиться, что является гарантией сохранения работоспособности и полной безопасности эксплуатации.

Символический метод расчета цепей переменного тока

Основы > Теоретические основы электротехники

Символический метод расчета цепей переменного тока

Соединим последовательно лампу накаливания с сопротивлением R, батарею конденсаторов с емкостью С и катушку с большой индуктивностью L. Если данную цепь присоединить к зажимам генератора переменного тока, то лампа загорится, что свидетельствует о наличии электрического тока в цепи, несмотря на разрыв, существующий между изолированными друг от друга обкладками конденсатора.Для цепи переменного тока с последовательным соединением R, L, С (см. рисунок) дифференциальные уравнения по второму закону Кирхгофа имеют вид:

Здесь ток во всех трех участках один и тот же:

Разности потенциалов на всех трех сопротивлениях имеют вид:

Решение системы дифференциальных уравнений можно существенно упростить, если перейти от дифференциальных уравнений к алгебраическим. Это можно сделать, изображая синусоидальные величины (i, u) в комплексной форме, т.е. в виде вектора на комплексной плоскости.
Вектор Um и его проекции.Расположим под углом относительно оси абсцисс вектор Um, длина которого в масштабе равна амплитуде изображаемой величины. Положительные углы будем откладывать в направлении против часовой стрелки.Проекции вектора на вертикальную ось мнимых величин в комплексной плоскости равны мгновенному значению напряжения.Система векторов на комплексной плоскости называется векторной диаграммой. Вектора вращаются относительно центра координат с одной и той же скоростью и поэтому относительно друг друга их положение не меняется. Векторная диаграмма изображается неподвижной в заданный момент времени, определяемый начальнойфазой какой-либо величины, например, для идеальных элементов R, L, С.
Векторные диаграммы для идеальных элементов R, L, C.Сложение двух функций в тригонометрической форме трудоемко, но легко производится в векторной форме.
Векторные диаграммы сложения двух напряженийВ расчетах применяют три формы записи комплексных величин:

1) алгебраическая 2) тригонометрическая 3) показательная, учитывая

Символ j перед мнимой частью комплексного числа в алгебраической форме означает, что мнимая часть повернута по отношению к вещественной на угол 90° в положительном направлении (против часовой стрелки).Переходы из одной формы записи в другие:

где

гдеПредставленная ранее система дифференциальных уравнений для цепи переменного тока с R, L, С в комплексном виде записывается следующим образом:

Используя выражения , запишем выражение для полного напряжения цепи:

где — комплексное сопротивление; — комплексная амплитуда напряжения; — комплексная амплитуда тока.При замене амплитудных значений на действующие получим закон Ома в комплексной форме:

Величину Z называют полным сопротивлением цепи переменного тока.Первый закон Кирхгофа в комплексной форме:

Второй закон Кирхгофа в комплексной форме:

Векторная диаграмма напряжений для цепи с последовательным соединением R, L, C будет представлять собой прямоугольный треугольник.Треугольник напряженийТреугольники токов, сопротивлений и мощностей строятся аналогично

Полная мощность S = UI;активная мощностьреактивная мощность
где

В треугольниках напряжений, токов, сопротивлений и мощностей угол сохраняет свое значение.При параллельном соединении ветвей их проводимости складываются в комплексной форме:Общий ток, согласно первому закону Кирхгофа:

Смотри ещё по разделу на websor

  • История формирования ТОЭ
  • Основные понятия
  • Электрические цепи постоянного тока
  • Приимер расчета цепей постоянного тока
  • Электрические цепи переменного тока
  • Расчет цепей переменного тока
  • Символический метод расчета цепей
  • Резонансные явления
  • Переходные процессы
  • Трехфазные цепи
  • Симметричные составляющие трехфазной системы
  • Нелинейные цепи
  • Несинусоидальные токи и напряжения
  • Магнитные цепи

Смотри ещё по разделу на websor

  • История формирования ТОЭ
  • Основные понятия
  • Электрические цепи постоянного тока
  • Приимер расчета цепей постоянного тока
  • Электрические цепи переменного тока
  • Расчет цепей переменного тока
  • Символический метод расчета цепей
  • Резонансные явления
  • Переходные процессы
  • Трехфазные цепи
  • Симметричные составляющие трехфазной системы
  • Нелинейные цепи
  • Несинусоидальные токи и напряжения
  • Магнитные цепи

2.4. Закон Ома для цепи переменного тока. Мощность.

В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J · u. Практический интерес представляет среднее за период переменного тока значение мощности

Здесь I и U – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R, то фазовый сдвиг φ = 0:

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения:

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна

Если участок цепи содержит только конденсатор емкости C, то фазовый сдвиг между током и напряжением Поэтому

Аналогично можно показать, что PL = 0.

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна

Как видно из векторной диаграммы, UR =  · cos φ, поэтому Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I и напряжения для последовательной RLC-цепи:

Величину

полным сопротивлением

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC-контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).


Рисунок 2.4.1.Параллельный RLC-контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R, C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока. Векторная диаграмма для параллельного RLC-контура изображена на рис. 2.4.2.


Рисунок 2.4.2.Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует:

Поэтому полное сопротивление параллельного RLC-контура выражается соотношением

При параллельном резонансе (ω2 = 1 / LC) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора:

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

Главная 
 Онлайн учебники 
 Подготовка по всем предметам онлайн 
 Подготовка к ЕГЭ онлайн

Электрическая цепь RC

Рассмотрим ток в электрической цепи, состоящей из конденсатора ёмкостью C и резистора сопротивлением R, соединённых параллельно.
Значение тока заряда или разряда конденсатора определится выражением I = C(dU/dt), а значение тока в резисторе,
согласно закону Ома, составит U/R, где U — напряжение заряда конденсатора.

Из рисунка видно, что электрический ток I в элементах C и R цепи будет иметь одинаковое значение и
противоположное направление, согласно закону Кирхгофа. Следовательно, его можно выразить следующим образом:

Решаем дифференциальное уравнение C(dU/dt)= -U/R

Интегрируем:

Из таблицы интегралов здесь используем преобразование

Получаем общий интеграл уравнения: ln|U| = — t/RC + Const.
Выразим из него напряжение U потенцированием: U = e-t/RC * eConst.
Решение примет вид:

U = e-t/RC * Const.

Здесь Const — константа, величина, определяемая начальными условиями.

Следовательно, напряжение U заряда или разряда конденсатора будет меняться во времени по экспоненциальному закону
e-t/RC.

Экспонента — функция exp(x) = exe – Математическая константа, приблизительно равная 2.718281828…

Мощность при наличии сдвига фаз между током и напряжением

В условиях переменного электротока совпадения в токовом направлении и напряжении отмечаются только при отсутствии катушечной индукции и конденсаторов. В этом случае векторное направление тока и напряжения идентичны. Присутствие в схеме катушек и конденсатора сопровождается совпадением токовых фаз и показателей напряжения, но векторное вращение происходит на одинаковой скорости и при неизменных параметрах угла.

Фазовое смещение или сдвиг совпадает с углом, который наблюдается между векторными радиусами токовых показателей и параметров напряжения, а отставание в этих критериях провоцирует несовпадение.

Сдвиг фаз переменного тока и напряжения

При этом мощностные характеристики являются отрицательными за счет произведения положительной и отрицательной величин. В подобных условиях электрическая цепь внешнего типа становится стандартным источником электроэнергии. Незначительный объем энергии, поступающей в цепь на положительных показателях мощности, осуществляет возврат только при наличии отрицательных значений.

Продолжительность частей периода напрямую зависит от уровня фазового сдвига, при этом показатели смещения определяются длительностью отрицательных мощностей, или так называемыми средними мощностными характеристиками электрического тока.

Векторная диаграмма

Произвольно выберем условно-положительное направление тока i, в данном случае по часовой стрелке. Для мгновенных величин в соответствии со вторым законом Кирхгофа уравнение напряжений (а — падение напряжение на активном сопротивлении; р — падение напряжения на реактивном элементе )

u = u1a + u1p + u2a + u2p + u3a  + u4p + u5p;

Для действующих величин необходимо записать векторную сумму:

U = U1a + U1p + U2a + U2p + U3a + U4p + U5p;

Численно векторы напряжений определяются произведением тока и сопротивления соответствующего участка. На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения напряжения на каждом участке схемы, причем направления их относительно веrтора тока выбраны в соответствии с характером сопротивления участков.

При построении диаграммы напряжений выбрана начальная точка 6 совпадающая с началом вектора тока i. Из этой точки проведен вектор U5.2реактивного напряжения индуктивности (по фазе опережает ток на 90°) между точками 5 и 6 цепи. Из конца его проведен вектор U реактивного напряжения емкости (по фазе отстает от тока на 90° ) между точками 4 и 5 цепи. Затем отложен вектор U3a активного напряжения на резисторе (совпадает по фазе с током) между точками3 и 4 цепи и т. д., если следовать по цепи против направления тока.Точки векторной диаграммы, где сходятся начало следующего вектора с концом предыдущего, обозначены теми же номерами, какими на схеме обозначены точки, отделяющие одни элемент от другого.

При таком, построении напряжение между любыми двумя точками цепи можно найти по величине и фазе, проведя вектор на диаграмме между точками с теми же номерами. Например, напряжение U5.2 между точками 5 и 2 выражается вектором, проведенным из точки 2 в точку 5 (вектор  U2.5 направлен в обратную сторону); напряжение U3.1 между точками 3 и 1 выражается вектором, проведенным из точки 1 в точку 3.

Векторная диаграмма, построенная в соответствии с чередованием элементов цепи, называется топографической, так как точки, отделяющие векторы друг от друга, соответствуют точкам, разделяющим элементы схемы.

Постоянная времени τ

Если конденсатор емкостью C последовательно с резистором сопротивлением R подключить к источнику постоянного напряжения U,
в цепи пойдёт ток, который за любое время t зарядит конденсатор до значения UC и определится выражением:

Тогда напряжение UC на выводах конденсатора будет увеличиваться от нуля до значения U по экспоненте:

UC = U(1 — e-t/RC)

При t = RC, напряжение на конденсаторе составит UC = U(1 — e-1) = U(1 — 1/e) .
Время, численно равное произведению RC, называется постоянной времени цепи RC и обозначается греческой буквой τ.

Постоянная времени τ = RC

За время τ конденсатор зарядится до (1 — 1/e)*100% ≈ 63,2% значения U.
За время 3τ напряжение составит (1 — 1/e3)*100% ≈ 95% значения U.
За время 5τ напряжение возрастёт до (1 — 1/e5)*100% ≈ 99% значения U.

Если к конденсатору емкостью C, заряженному до напряжения U, параллельно подключить резистор сопротивлением R,
тогда в цепи пойдёт ток разряда конденсатора.

Напряжение на конденсаторе при разряде будет составлять UC = Ue-t/τ = U/et/τ.

За время τ напряжение на конденсаторе уменьшится до значения U/e, что составит 1/e*100% ≈ 36.8% значения U.

За время 3τ конденсатор разрядится до (1/e3)*100% ≈ 5% от значения U.
За время 5τ до (1/e5)*100% ≈ 1% значения U.

Параметр τ широко применяется при расчётах RC-фильтров различных электронных цепей и узлов.

Замечания и предложения принимаются и приветствуются!

Расчетные формулы

Из векторной диаграммы видно, что все активные составляющие векторов напряжений направлены одинаково — параллельно вектору тока, поэтому векторное сложение их можно заменить арифметическим и найти активную составляющую напряжения цепи: Ua = U1a + U2a + U3a

Реактивные составляющие векторов напряжений перпендикулярны вектору тока, причем индуктивные напряжения направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая напряжения цепи Up определяется их алгебраической суммой, в которой индуктивные напряжения считаются положительными, а емкостные — отрицательными: Up = — U + U2p — U4p + U5p.

Векторы активного, реактивного и полного напряжений цепи образуют прямоугольный треугольник, из которого следует

Подставив падения напряжения, выраженные через ток и соответствующие сопротивления, получим:

Таким образом снова получена знакомая уже формула, связывающая ток, напряжение и полное сопротивление цепи .

В этой формуле ∑Rn—общее активное сопротивление, равное арифметической сумме всех активных сопротивлений, входящих в неразветвленную цепь; ∑Xn — общее реактивное сопротивление, равное алгебраической сумме всех реактивных сопротивлений, входящих в неразветвленную цепь. В этой сумме индуктивные сопротивления считаются положительными, а емкостные — отрицательными. Полное сопротивление неразветвленной цепи

В общем случае полное сопротивление цепи определяется как гипотенуза прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активное и реактивное сопротивления всей цепи. Из треугольника сопротивлений следует:

От треугольника напряжений можно перейти также к треугольнику мощностей и получить уже известные формулы для определения мощностей в цепи:

Вместе с тем активную мощность цепи можно представить как арифметическую сумму активных мощностей в элементах с активным сопротивлением. Реактивная мощность цепи равна алгебраической сумме мощностей реактивных элементов.

В этой сумме мощность индуктивных элементов считается положительной, а емкостных — отрицательной:

Формулы (14.2)—(14.7) являются общими; из них можно получить конкретное выражение для любой неразветвленной цепи.

В трехфазной цепи

Мощностные показатели переменного тока при равномерной трехфазной нагрузке определяются наличием равноценного тока, протекающего по проводникам фазы. В этом случае показатели силы тока в условиях использования нулевого проводника составляют «О». Формула для расчета мощности переменного тока в условиях трехфазной сети: Р = 3 × U φ × I × соs(φ).

Симметричная (равномерная) нагрузка фаз в трехпроводной цепи трехфазного тока

Протекание внутри фазных проводников различных по величине токов представляет собой несимметричную, или неравномерную нагрузку. При этом именно несимметричная нагрузка сопровождается протеканием тока по нулевым или нейтральным проводам, поэтому уровень мощностных показателей определяется в соответствии со стандартной и общеизвестной формулой:

Робщая = Uа × Iа × соs(φ1) + Ub × Ib × соs(φ2) + Uс × Iс × соs(φ3).

Ссылка на основную публикацию