Удельная теплоемкость жидких веществ при 20°с

Калориметр

Рассмотрим такой прибор, как калориметр (рис. 4).

Рис. 4. Калориметр (Источник)

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты, выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание

Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение

Теплофизические свойства жидких топлив при 20ºС

В таблице приведены следующие свойства жидких топлив при 20ºС и атмосферном давлении:

  • состав горючей смеси, % по массе;
  • зольность, %;
  • содержание влаги, %;
  • низшая теплота сгорания, кДж/кг;
  • плотность, кг/м3;
  • массовая теплоемкость, кДж/(кг·град);
  • кинематическая вязкость, м2/сек;
  • теплопроводность, Вт/(м·град);
  • температура вспышки, К;
  • температура кипения, К.

Свойства даны для следующих жидких топлив: бензин высшего качества, бензин 3-го сорта, керосин высшего качества, керосин торговый, дизельное автотракторное горючее, соляровое масло, мазут малосернистых марок.

Примечание: мазут содержится в нефтяных фракциях, перегоняемых, при температурах 473-643К; его химический состав и удельный вес меняются в зависимости от сорта нефти. Химические свойства и состав горючей массы бензина изменяются в зависимости от метода получения и сорта нефти. Обычно бензин состоит из насыщенных алифатических соединений, меняющихся в пределах от C5H12 до C12H26; в среднем состав соответствует C8H18 (октан).

Следует отметить, что коэффициент объемного расширения нефтепродуктов приблизительно равен 955·10-6 1/град при температуре 120ºС.

Немного истории

Исследования историков позволяют сделать вывод, что медные орудия труда применялись на Ближнем Востоке еще в начале 4 в. до н. э. В конце этого века в Передней Азии люди начали применять первые бронзовые орудия труда. В это же время в Иране появились медные предметы, в которых содержалась примесь олова, а в бронзовых орудиях труда, найденных при раскопках на Кавказе и в Анатолии и относящихся к 3 в. до н. э., была обнаружена примесь мышьяка.

По другим данным, впервые медь начали добывать в это же время на Кипре, отсюда и ее латинское название Cuprum. Медь стала основным металлом для производства орудий труда, охоты, предметов домашней утвари.

Медь широко используется с незапамятных времен.

Еще древние люди заметили, что если к медной руде добавить олово или цинк, то плавиться смесь начнет при более низкой температуре. Поэтому медный расплав можно было получить прямо на костре.

Наши предки чаще использовали малахитовую руду. Ее не нужно было обжигать. Руду смешивали с углями, помещали в глиняный сосуд и опускали в вырытую в земле яму. Затем смесь в сосуде поджигали. Во время горения выделялся угарный газ, который, являясь катализатором, восстанавливал руду до металла.

Таблица удельной теплоемкости жидкостей

В таблице представлены значения удельной теплоемкости Cp распространенных жидкостей при температуре 10…25°С и нормальном атмосферном давлении.

Таблица удельной теплоемкости жидкостей
Жидкости Cp, Дж/(кг·К)
Азотная кислота (100%-ная) NH3 1720
Анилин C6H5NH2 2641
Антифриз (тосол) 2990
Ацетон C3H6O 2160
Бензин 2090
Бензин авиационный Б-70 2050
Бензол C6H6 1050
Вода H2O 4182
Вода морская 3936
Вода тяжелая D2O 4208
Водка (40% об.) 3965
Водный раствор хлорида натрия (25%-ный) 3300
Газойль 1900
Гидроксид аммония 4610
Глицерин C3H5(OH)3 2430
Даутерм 1590
Карборан C2H12B10 1720
Керосин 2085…2220
Кефир 3770
Мазут 2180
Масло АМГ-10 1840
Масло ВМ-4 1480
Масло касторовое 2219
Масло кукурузное 1733
Масло МС-20 2030
Масло подсолнечное рафинированное 1775
Масло ТМ-1 1640
Масло трансформаторное 1680
Масло хлопковое рафинированное 1737
Масло ХФ-22 1640
Молоко сгущенное с сахаром 3936
Молоко цельное 3906
Нефть 2100
Парафин жидкий (при 50С) 3000
Пиво 3940
Серная кислота (100%-ная) H2SO4 1380
Сероуглерод CS2 1000
Силикон 2060
Скипидар 1800
Сливки (35% жирности) 3517
Сок виноградный 2800…3690
Спирт метиловый (метанол) CH3OH 2470
Спирт этиловый (этанол) C2H5OH 2470
Сыворотка молочная 4082
Толуол C7H8 1130
Топливо дизельное (солярка) 2010
Топливо реактивное 2005
Уротропин C6H12N4 1470
Фреон-12 CCl2F2 840
Эфир этиловый C4H10O 2340

Как расплавить медь в домашних условиях

Медь имеет невысокую температуру плавления, что позволяет плавить ее в домашних условиях.

Иногда и в наше время возникает необходимость получить в домашних условиях медный расплав. Для этого можно воспользоваться несколькими способами.

  • Если имеется муфельная печь, медные детали нужно положить в тигель и поместить его в печь. В процессе плавления следует наблюдать за образованием оксидной пленки. Ее нужно убирать при помощи стального крючка. Оксидная пленка, если ее не убрать, сделает расплав некачественным.
  • Медные детали можно расплавить автогеном, удаляя оксидную пленку.
  • Если оксидная пленка образуется интенсивно, поверхность расплава можно присыпать измельченным древесным углем.
  • Самые легкоплавкие медные сплавы — некоторые виды бронзы и латунь можно плавить обычной паяльной лампой.
  • Лучшего результата можно добиться, соорудив небольшой горн. Стальную решетку нужно положить на кирпичи, чтобы снизу был доступ воздуха. На решетку насыпать слой древесных углей и поджечь. На угли кладется тигель с медными деталями. Чтобы повысить температуру горения, нужно увеличить приток воздуха. Делается это с помощью электрического вентилятора или пылесоса, работающего на выдув воздуха.

Анализ табличного значения удельной теплоемкости

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «vactekh-holod.ru» (Источник)

Домашнее задание

  1. Стр. 22: вопросы № 1-5. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  2. Удельная теплоемкость меди равна . Что это означает?
  3. Металлическому цилиндру массой 250 г передали 46 кДж тепла, и он нагрелся с  до . Из какого металла изготовлен цилиндр?
  4. *Какие изменения произошли бы на Земле, если бы удельная теплоемкость воды была в 10 раз меньше?

Теплоемкость, линейное расширение, плотность и теплопроводность нихрома

В таблице представлены следующие физические свойства нихрома: удельная теплоемкость при 25°С, средний коэффициент теплового линейного расширения в интервале температуры от 20 до 1000°С и плотность нихрома при 25°С.

Следует отметить, что рассмотренные марки нихрома имеют близкие значения физических свойств. Плотность нихрома находится в диапазоне 8200…8660 кг/м3 и повышается с увеличением содержания в сплаве никеля. Коэффициент теплового линейного расширения нихрома при 20…1000°С имеет значение (17…18)·10-6 град-1. Удельная теплоемкость нихрома, в зависимости от марки, составляет 440…460 Дж/(кг·град).

Удельная теплоемкость, линейное расширение и плотность нихрома
Марка нихрома C, Дж/(кг·град) α·106, град-1 ρ, кг/м3
Нихром (10%Cr + 90%Ni) 460 18 8660
Х15Н60 460 17 8200
Х20Н80-Н 440 18 8400
Nikrothal 80 460 17,2 8300

Теплопроводность нихрома имеет величину, близкую по значению с теплопроводностью нержавеющей стали. В таблице приведены данные по теплопроводности рассмотренных сплавов при различных температурах в интервале от 0 до 600°С.

Теплопроводность нихрома увеличивается при нагревании. С повышением содержания никеля в сплаве его коэффициент теплопроводности повышается. К примеру, сплав, содержащий 10% Cr и 90% Ni, имеет наибольшую теплопроводность из рассмотренных сплавов, равную 17,4 Вт/(м·град) при 20°С.

Теплопроводность нихрома при различных температурах, Вт/(м·град)
t, °С → 20 100 200 300 400 500 600
Нихром (10%Cr + 90%Ni) 17,1 17,4 18,9 20,9 22,8 24,7
Х15Н60 11,8 13,3 14,6 16,1 17,5
Х20Н80-Н 12,2 13,6 13,8 15,6 17,2 18,9 22,6
Nikrothal 80 15 15 15 15 17 19 21
  1. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  2. ГОСТ 10994-74 Сплавы прецизионные. Марки.
  3. ГОСТ 12766.1-90 Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.
  4. ГОСТ 12766.3-90 Сплавы калиброванные прецизионные с высоким электрическим сопротивлением. Технические условия.
  5. Лариков Л.Н., Юрченко Ю.Ф. Тепловые свойства металлов и сплавов. Справочник Киев: Наукова думка, 1985 — 439 с.
  6. Сайт www.kanthal.com

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения.
Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м3, а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м3. Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

В таблице приведены следующие теплофизические свойства алюминия:

  • плотность алюминия, г/см3;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент температуропроводности, м2/с;
  • теплопроводность алюминия, Вт/(м·град);
  • удельное электрическое сопротивление, Ом·м;
  • функция Лоренца.
Ссылка на основную публикацию