Магнитное поле

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N 2) 1 — А, 2 — N 3) 1 — S, 2 — S 4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному 2) 1 — южному; 2 — северному полюсу 3) и 1, и 2 — северному полюсу 4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90° 2) повернётся на 180° 3) повернётся на 90° или на 180° в зависимости от значения силы тока 4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1 2) 2 3) 3 4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо 2) влево 3) на нас из-за плоскости чертежа 4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный 2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный 3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный 4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле. 2) Вокруг неподвижных зарядов существует электростатическое поле. 3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный. 4) Магнитное поле существует вокруг движущихся зарядов. 5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится. 2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо. 3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А. 4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз. 5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Немного истории

Уже в VI в. до н.э. в Китае было известно, что некоторые руды, например, магнитный железняк, обладают способностью притягиваться друг к другу и притягивать на расстоянии железные предметы. Поскольку впервые куски таких руд были обнаружены возле города Магнезии в Малой Азии, то в Древней Греции они получили название магнитов.

Термин «полюсы магнитов» от греческого слова περαζ — ось, конец оси был введен Петром Перегрином в 1269 г. в книге «Письма о магнитах».

Явления притяжения разноименных и отталкивания одноименных полюсов магнита напоминают явления взаимодействия разноименных и одноименных электрических зарядов. Однако многочисленные попытки ученых установить связь между электрическими и магнитными явлениями на протяжении многих столетий оставались безрезультатными.

Наступает 1820 год. В феврале секретарь Датского королевского общества Ханс Кристиан Эрстед (1777-1851) прямо во время лекции обнаружил, что магнитная стрелка отклоняется, если пропустить ток по проводнику, и возвращается в свое первоначальное положение при размыкании цепи (рис. 7).

Рис. 7

Описание этого простого опыта произвело сильное впечатление в научном сообществе и вызвало лавину новых открытий. Жан Батист Био и Феликс Савар нашли выражение для силы, действующей со стороны тока на магнитный полюс. Доминик Франсуа Араго обнаружил намагничивание железных опилок проводником с током. Андре Мари Ампер показал (сентябрь 1820 г.), что два параллельных проводника с токами притягиваются или отталкиваются в зависимости от направления тока в них (рис. 8, а, б), а так же получил выражение для силы взаимодействия между электрическими токами и выявил тесную «генетическую» связь между электрическими и магнитными процессами. В декабре 1821 года М. Фарадей демонстрирует первый электромотор.

Таким образом, родилась новая область физики — электродинамика.

Рис. 8

См. так же

  1. Васильев А. Вольта, Эрстед, Фарадей //Квант. — 2000. — № 5. — С. 16-17
  2. Слободянюк А.И. Физика 10. §12. Постоянное магнитное поле

Физика 11 класс

«Урок Электромагнитная индукция» — Правило Ленца. Тип урока – урок изучения нового материала. Явление электромагнитной индукции.

«Генератор» — План. Ротор (индуктор) генератора переменного тока с внутренними полюсами. Виды генераторов: Устройство генератора переменного тока Виды генераторов переменного тока. Дизель-агрегат- генератор, ротор которого вращается от двигателя внутреннего сгорания. Презентация подготовлена ученицами 11А класса Усиковой Светланой и Занкисовой Ириной. «Генератор переменного тока. Вращающийся индуктор генератора I (ротор) и якорь (статор) 2, в обмотке которого индуцируется ток.

«Физика Радио» — В своих опытах Попов использовал заземлённую мачтовую антенну, изобретенную в 1893 году Тесло. Кто создал радио? Совет директоров Института инженеров электротехники и электроники (IEEE) отметил демонстрацию А. С. Попова как веху в электротехнике и радиоэлектронике. Александр Степанович Попов. Проект по теме: Кто создал Радио? В 1895 году Маркони послал беспроводной сигнал из своего сада в поле на расстояние 3 км.

«Сопротивление в цепи переменного тока» — Активное сопротивление в цепи переменного тока. i, u. Электрические устройства, преобразующие электрическую энергию во внутреннюю, называются активными сопротивлениями. Удельное сопротивление проводника Длина проводника в метрах Площадь поперечного сечения проводника в мм2. МОУ СОШ №9 г. ХОЛМСК САХАЛИНСКОЙ ОБЛАСТИ. АКТИВНОЕ, ЕМКОСТНОЕ И ИНДУКТИВНОЕ СОПРОТИВЛЕНИЯ В ЦЕПИ ПЕРЕМЕННОГО ТОКА 11 класс.

«Попов Александр Степанович» — Биография А.С.Попова. Презентацию выполнили учащиеся 11 класса: Тетеря Наталья. В семье было еще шестеро детей. Создание первого в мире радиоприемника. Устройство и принцип действия первого приёмника. Сначала приемник мог «чувствовать» только атмосферные электрические разряды молнии. А.С.Попов. Список использованной литературы: http:// a, c.попов. Сегодня трудно себе представить жизнь без радио. К сожалению, судьба не была благосклонной к Александру Степановичу Попову.

«Открытие нейтрона» — Открытие нейтрона. 1) Предположение об излучении бериллием ?-квантов, т. е. частиц, лишенных массы покоя, несостоятельно. Дмитрий Дмитриевич Иваненко (1904-1994). Ирен Жолио-Кюри (1897-1956). Можно говорить только о некотором среднем радиусе ядра. Из закона сохранения энергии и импульса к соударениям нейтронов с атомными ядрами: Отношение скоростей ядер отдачи азота и водорода: Фредерик Жолио-Кюри (1900-1958). Строение атомного ядра.

«Физика 11 класс»

Однородное и неоднородное магнитные поля

Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно. Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным

В заключение урока хотелось бы обратить ваше внимание на следующие рисунки

Рис. 6. Неоднородное магнитное поле

Во-первых, теперь мы уже знаем, что магнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.

На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.

Рис. 7. Однородное магнитное поле

Однородное магнитное поле – это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.

Неоднородное

магнитное поле

Однородное

Магнитное поле

Сила, действующая в разных точках

Различна

Одинакова (как по модулю, так и по направлению)

Линии магнитного поля

Искривлены, их густота различна

Параллельны, их густота одинакова

Примеры

Поле магнита вне его

Поле прямолинейного проводника с током

Поле внутри длинной катушки с большим числом витков. Поле внутри магнита

Список дополнительной литературы:

Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974

Немного из истории магнетизма

Исследование явления магнетизма началось много веков назад, когда еще в VI в. до н.э. в древнем Китае были обнаружен камни (горная порода), которые притягивали к себе железные предметы. В 1269 г. французский исследователь Петр Перегрин разместил на поверхности постоянного сферического магнита маленькие стальные иголки и увидел, что они расположились не хаотично, а по определенным линиям, которые пересекались в двух точках, названных “полюсами” по аналогии с географическими полюсами Земли. Можно сказать, что это была первая “визуализация” магнитных линий.

Только в 1845 г. английский физик Майкл Фарадей для понимания сути магнитных явлений сформулировал понятие “магнитного поля”. Он считал, что как электрическое, так и магнитное взаимодействия осуществляются посредством невидимых полей — электрического и магнитного. Магнитное поле непрерывно в пространстве и способно действовать на движущиеся заряды.

В 1831 г. Майкл Фарадей обнаружил, что переменное магнитное поле порождает электрическое и наоборот — непостоянное (изменяющееся во времени) электрическое поле создает магнитное поле. Это явление стало известно как закон электромагнитной индукции Фарадея. Слово индукция латинского происхождения (induction) означает “наведение, выведение”.

Определение формы магнитного поля

Магнитное поле проявляется именно тогда, когда есть движущиеся заряды. Если заряды покоятся, никакого магнитного поля мы вокруг них наблюдать не будем, в этом случае это электрическое поле.

Наши органы чувств, к сожалению, не могут дать нам возможности ощутить и определить магнитное поле. Но, тем не менее, есть возможность магнитное поле увидеть. Мы можем определить его форму, как и где оно располагается, характеризовать его некоторым образом. Для того чтобы увидеть эти электромагнитные явления, используют, как правило, железные опилки.

Дело в том, что в магнитном поле железные опилки намагничиваются и приобретают свойство магнитных стрелок. И оказалось, что если эти магнитные стрелки, очень-очень маленькие, расположить вокруг магнитов или электрического тока, то магнитные стрелки будут себя вести, как положено им в магнитном поле, ориентируясь определенным образом.

Постоянные магниты

Что же такое постоянный магнит? Постоянным магнитом называется тело, способное долгое время сохранять намагничивание. В результате многократных исследований, проведенных многочисленных опытов, мы можем сказать, что только три вещества на Земле могут быть постоянными магнитами (рис. 1).

Рис. 1. Постоянные магниты. (Источник)

Только эти три вещества и их сплавы могут быть постоянными магнитами, только они могут намагничиваться и сохранять такое состояние долгое время.

Постоянные магниты использовались очень давно, и в первую очередь это приборы ориентирования в пространстве – первый компас был изобретен в Китае для того, чтобы ориентироваться в пустыне. На сегодняшний день о магнитных стрелках, о постоянных магнитах уже никто не спорит, их используют повсеместно в телефонах и в радиопередатчиках и просто в различных электротехнических изделиях. Они могут быть разными: есть полосовые магниты (рис. 2)

Рис. 2. Полосовой магнит (Источник)

А есть магниты, которые называются дугообразными или подковообразными (рис. 3)

Рис. 3. Дугообразный магнит (Источник)

Линии магнитного поля. Свойства

Следующее, о чем мы будем говорить, о том, как можно изобразить магнитное поле. В результате исследований, которые были проведены в течение долгого времени, стало понятно, что магнитное поле удобно изображать при помощи магнитных линий. Чтобы пронаблюдать магнитные линии, проделаем один эксперимент. Для нашего эксперимента потребуется постоянный магнит, металлические железные опилки, стекло и лист белой бумаги.

Рис. 3. Железные опилки выстраиваются вдоль линий магнитного поля

Магнит накрываем стеклянной пластиной, а сверху кладем лист бумаги, белый лист бумаги. Сверху на лист бумаги сыплем железные опилки. В результате будет видно, как проявляются линии магнитного поля. То, что мы увидим, – это линии магнитного поля постоянного магнита. Их еще называют иногда спектром магнитных линий. Заметьте, что линии существуют по всем трем направлениям, не только в плоскости.

Магнитная линия – воображаемая линия, вдоль которой выстраивались бы оси магнитных стрелок.

Рис. 4. Схематическое изображение магнитной линии

Посмотрите, на рисунке представлено следующее: линия изогнутая, направление магнитной линии определяется направлением магнитной стрелки. Направление указывает северный полюс магнитной стрелки. Очень удобно изображать линии именно при помощи стрелок.

Рис. 5. Как обозначается направление силовых линий

Теперь поговорим о свойствах магнитных линий. Во-первых, у магнитных линий нет ни начала, ни конца. Это линии замкнутые. Раз магнитные линии замкнуты, то не существует магнитных зарядов.

Второе: это линии, которые не пересекаются, не прерываются, не свиваются каким-либо образом. При помощи магнитных линий мы можем характеризовать магнитное поле, представить себе не только его форму, но и говорить о силовом воздействии. Если изображать большую густоту таких линий, то в этом месте, в этой точке пространства, у нас силовое действие будет больше.

Магнитные линии прямого провода с током

Используем такую же схему эксперимента для прямого провода, по которому течет электрический ток. В данном случае можно заменить прозрачную пластину на кусок картона или фанеры.

Рис. 3. Магнитные линии прямого провода с током.

Видно, что опилки выстраиваются по концентрическим окружностям, показывая форму магнитных линий. При изменении направления тока опилки поворачиваются на 180. Следовательно, направление магнитных линий в данном случае связано с направлением тока в проводнике.

Известно, что Земля — это огромный “полосовой” магнит. Благодаря этому, с помощью магнитной стрелки компаса мы можем ориентироваться в пространстве. Но надо иметь ввиду, что есть места с крупными залежами магнетитов (железных руд), которые создают сильное “фоновое” магнитное поле, которое поворачивает стрелку компаса вдоль своих магнитных линий. Одно из таких мест — Курская магнитная аномалия, расположенная в Курской области нашей страны.

Что мы узнали?

Итак, мы узнали, что магнитное поле изображают в виде магнитных линий, которые: непрерывны, замкнуты, в постоянных магнитах магнитные линии выходят из северного полюса и заканчиваются в южном полюсе, направление магнитных линий прямого провода с электрическим током зависит от направления тока.

Система уравнений Максвелла

В состав системы уравнений Максвелла входят четыре уравнения.

Первое уравнение:

Это Закон Фарадея (Закон электромагнитной индукции).

где -напряженность электрического поля, -вектор магнитной индукции, c – скорость света в вакууме.

Это уравнение говорит, о том, что ротор напряженности электрического поля  равен потоку (т.е. скорости изменения во времени) вектора магнитной индукции  сквозь этот контур.Уравнение (1.1) представляет собой первое уравнение Максвелла в дифференциальной форме.

Это же уравнение можно записать в интегральной форме, тогда оно примет следующий вид:

или

где  – проекция на нормаль к площадке dS вектора магнитной индукции,

 – магнитный поток.

рис. 2.

Циркуляция вектора напряженности электрического поля вдоль замкнутого контура L (ЭДС индукции) определяется скоростью изменения потока вектора магнитной индукции через поверхность, ограниченную данным контуром. Знак минус по правилу Ленца означает направление индукционного тока.

Согласно Максвеллу закон электромагнитной индукции (а это именно он), справедлив для любого замкнутого контура, произвольно выбранного в переменном магнитном поле.

Смысл этого уравнения: Переменное магнитное поле в любой точке пространства создает вихревое электрическое поле.

Второе уравнение Максвелла:

где -вектор магнитной напряженности, — плотность электрического тока, — вектор электрического смещения.

Данное уравнение Максвелла является обобщением эмпирического закона Био-Савара о том, что магнитные поля возбуждаются электрическими токами. Смысл второго уравнения в том, что источником возникновения вихревого магнитного поля является также переменное электрическое поле, магнитное действие которого характеризуется током смещения. ( -плотность тока смещения).

В интегральном виде второе уравнение Максвелла (Теорема о циркуляции магнитного поля) представлено следующим образом:

или

Циркуляция вектора напряжённости магнитного поля по произвольному контуру равна алгебраической сумме токов проводимости и тока смещения, сцепленных с контуром.

Когда Максвелл вводил уравнения (более ста лет тому назад!), природа электромагнитного поля была не понятна. В настоящее время природа поля выяснена, и стало ясно, что  может быть названo «током» лишь формально. По pяду расчетных соображений такое название, не придавая ему прямого физического смысла, целесообразно сохранить, что в электротехнике и делается. По этой же причине вектор D, входящий в выражение для тока смещения, называют вектором электрического смещения.

Помимо первых двух уравнений в систему уравнений Максвелла входит теорема Гаусса-Остроградского для электрического и магнитного полей:

и

где  —плотность электрического заряда.

Что в интегральном виде представляет собой следующее:

и

где -поток электрического смещения — поток магнитной индукции  сквозь замкнутую поверхность, охватывающую свободный заряд q.

Смысл уравнения 3.2. Электрический заряд – источник электрической индукции.

Уравнение 4.2 выражает факт отсутствия свободных магнитных зарядов.

Полная система уравнений Максвелла в дифференциальном виде (характеризует поле в каждой точке пространства):

Заключение

Кроме существования магнитных бурь, существуют еще магнитные аномалии. Они связаны с солнечным магнитным полем. Когда на Солнце происходят достаточно мощные взрывы или выбросы, они происходят не без помощи проявления магнитного поля Солнца. Это эхо достигает Земли и сказывается на ее магнитном поле, в результате мы с вами наблюдаем магнитные бури. Магнитные аномалии связаны с залежами железных руд в Земле, огромные залежи в течение долгого времени намагничиваются магнитным полем Земли, и все тела, находящиеся вокруг, будут испытывать действие магнитного поля со стороны этой аномалии, стрелки компасов будут показывать неправильное направление.

На следующем уроке мы с вами рассмотрим другие явления, связанные с магнитными действиями.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. – М.: Мнемозина.
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Class-fizika.narod.ru (Источник).
  3. Files.school-collection.edu.ru (Источник).

Домашнее задание

  1. Какой из концов стрелки компаса притягивается к северному полюсу Земли?
  2. В каком месте Земли нельзя верить магнитной стрелке?
  3. О чем говорит густота линий на магните?
Ссылка на основную публикацию