Электродвижущая сила гальванического элемента (эдс)

Обозначения токов в измерительных приборах

Общепринятое обозначение постоянного и переменного тока нашло свое отражение в различных измерительных приборах, в том числе и на мультиметре. Вся необходимая символика наносится на лицевую панель того или иного устройства. Это позволяет измерить именно тот параметр, который необходим в данный момент.

Например, если на шкале выставлено положение АС, в этом случае можно проводить измерение значения переменного тока. Как правило, такие приборы предназначены для работы в электросетях с обычными напряжениями 220 или 380 вольт. Существуют модели с рабочими режимами в пределах 600 В и выше.

Если же мультиметр выставлен напротив отметки DC, то рабочий режим аппарата станет соответствовать постоянному току. В этом положении замеряется ток на аккумуляторах, батарейках и других источниках питания, вырабатывающих постоянный ток. В данном режиме требуется непременно соблюдать полярность полюсов. Диапазон измерений обычно составляет от нуля до нескольких тысяч вольт, в зависимости от характеристик конкретной модификации устройства.

Условные обозначения в электрических схемах ГОСТ

Обозначение на схемах радиодеталей

Буквенные обозначения элементов на электрических схемах

Обозначения на электрических схемах выключателей, розеток и лампочек

Маркировка диодов и схема обозначений

Обозначение трансформатора на схеме

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня — это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H2O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение — это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Буквенная маркировка проводов

Стандарты буквенной и цветовой маркировки проводов

Для бытовых и промышленных электролиний применяются изолированные провода с внутренними токопроводящими жилами. Изделия отличаются в зависимости от цвета изоляционного покрытия и маркировки. Обозначение фазы и нуля в электрике ускоряет ремонтные и монтажные работы.

Маркировка кабелей в электрических установках под напряжением до 1000 В регулируется ГОСТ Р 50462-2009:

  • в п. 6. 2.1 указывается, что нулевой проводник маркируется как N;
  • пункт 6.2.2. гласит, что провод защиты с заземлением обозначается PE;
  • в п. 6.2.12 сказано, что в электрике L является фазой.

L – обозначение фазы

Обозначение L и N в электрике

В сети переменного тока под напряжением находится фазный провод. В переводе с английского слово Line имеет значение активный проводник, линия, поэтому маркируется буквой L. Фазные проводники обязательно покрываются цветной изоляцией, поскольку, находясь в оголенном состоянии, могут стать причиной ожогов, травм человека, возгорания или выхода из строя различного оборудования.

N – буквенный символ нуля

Знак нулевого или нейтрального рабочего кабеля – N, от сокращения терминов neutral или Null. При составлении схемы так маркируются клеммы коммутации нуля в однофазной или трехфазной сети.

PE – индекс заземления

Маркировка заземления

Если проводка заземлена, применяется буквенный маркер PE. С английского значение Protective Earthing переводится как провод заземления. Аналогично будут обозначаться зажимы и контакты для коммутации с заземляющим нулем.

Расцветка изоляционного покрытия проводников

Обозначать по цветам кабели заземления, фазы и нуля необходимо в соответствии с требованиями ПУЭ. В документе установлены различия расцветки для заземления в электрощитке, а также для нуля и фазы. Понимание цветового обозначения изоляции исключает необходимость расшифровки буквенных маркеров.

Цвет жилы заземления

На территории РФ с 1 января 2011 года действует европейский стандарт МЭК 60446:2007. В нем отмечено, что заземление имеет только желто-зеленую изоляцию. Если составляется электросхема, земля должна обозначаться как РЕ.

Жила заземления есть только в кабелях от 3-х жил.

В проводниках PEN, используемых в старых постройках, совмещены жилы земли и нуля. Изоляционное покрытие в данном случае имеет синий цвет заземления и желто-зеленые кембрики на точках соединения и концах провода. В некоторых случаях использовалась обратная маркировка – зануление желто-зеленого цвета с синими наконечниками.

Жилы земли и нуля PEN-кабелей тоньше, чем фазные.

Цветовое обозначение нулевых рабочих контактов

Цвет проводов в электропроводке

Чтобы не перепутать, где фаза, а где ноль, вместо букв L и N ориентируются на цвета кабелей. Электрические стандарты отмечают, что нейтраль бывает синего, голубого, сине-белого оттенка вне зависимости от количества жил.

Обозначить ноль можно латинской литерой N, который на схеме читается как минус. Причина прочтения – участие нуля в замыкании электроцепи.

Расцветка фазного провода

Фаза – это токоведущая линия, которая при неосторожном касании может привести к поражению током. У мастеров-новичков часто возникают сложности с поиском кабеля

Обозначается фаза черным, коричневым, кремовым, красным, оранжевым, розовым, фиолетовым, серым и белым оттенком.

Буквенный индекс фазы – L. Он используется там, где провода не размечены цветом. При подключении кабеля к нескольким фазам рядом с литерой L ставится порядковый номер или латинские буквы А, В, С. Фазу также часто маркируют как плюс.

ЭДС с точки зрения гидравлики

Думаю, вам уже знакома водонапорная башня из прошлой статьи про напряжение

Допустим, что башня полностью заполнена водой. Снизу башни мы просверлили отверстие и врезали туда трубу, по которой вода бежит к вам домой.

Сосед захотел полить огурцы, вы решили помыть автомобиль, мать затеяла стирку и вуаля! Поток воды стал меньше и меньше, и вскоре совсем иссяк… Что случилось? Закончилась вода в башне…

Время, которое потребуется, чтобы опустошить башню, зависит от емкости самой башни, а также от того, сколько потребителей будут пользоваться водой.

Все то же самое можно сказать и про радиоэлемент конденсатор:

Допустим мы его зарядили от батарейки 1,5 вольта и он принял заряд.  Нарисуем заряженный конденсатор вот так:

Но как только мы цепляем к нему нагрузку (пусть нагрузкой будет светодиод) с помощью замыкания ключа S, в первые доли секунд светодиод будет светиться ярко, а потом тихонько угасать… и пока полностью не потухнет. Время угасания светодиода будет зависеть от емкости конденсатора, а также от того, какую нагрузку мы цепляем к  заряженному конденсатору.

Как я уже сказал, это равносильно простой наполненной башне и потребителям, которые пользуются водой.

Но почему тогда в наших башнях вода никогда не заканчивается? Да потому что работает насос подачи воды! А откуда этот насос берет воду? Из скважины, которая пробурена для добычи подземных вод. Иногда ее еще называют артезианской.

Как только башня полностью наполнится водой, насос выключается. В наших водобашнях насос всегда поддерживает максимальный уровень воды.

Итак, давайте вспомним, что  такое напряжение? По аналогии с гидравликой – это уровень воды в водобашне. Полная башня – это максимальный уровень воды, значит максимальное напряжение. Нет в башне воды – напряжение ноль.

Обозначения на схемах и в приборах

Общепринято, что направление электричества идет от контакта со знаком плюс к контакту со знаком минус.

Места с большими потенциалами имеют название «положительный полюс» и обозначаются значком + (плюс). Точки с меньшими потенциалами, соответственно, именуются «отрицательный полюс» и их обозначают знаком — (минус).

Изначально принято, что электроизоляция положительных проводов имеет красный цвет, провода же со знаком «минус» окрашивают в синий или черный цвета.

Условные обозначения на электроприборах: — или =. Однонаправленное электричество (в том числе постоянное) обозначается латиницей DC, или же используется символ Юникода — U+2393.

Аббревиатура AC и DC прочно укоренилась в повседневном обиходе и употребляется наравне с привычными названиями «переменный» и «постоянный»:

  • обозначение постоянного напряжения (—) или DC (Direct Current);
  • знак переменного тока (~) или AC (Alternating Current) — обозначение переменного тока.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Реальный источник ЭДС

Источник электрической энергии  – это источник ЭДС с внутренним сопротивлением Rвн. Это могут быть какие-либо химические элементы питания, наподобие  батареек и аккумуляторов

Их внутреннее строение с точки зрения ЭДС выглядит примерно вот так:

Где E – это ЭДС, а Rвн  – это внутреннее сопротивление батарейки

Итак, какие выводы можно сделать из этого?

Если к батарейке не цепляется никакая нагрузка, типа лампы накаливания и тд, то в результате сила тока в такой цепи будет равняться нулю. Упрощенная схема будет такой:

Но если мы все-таки присоединим к нашей батарейке лампочку накаливания, то у нас цепь станет замкнутой и в цепи будет течь ток:

В результате у нас в цепи побежит электрический ток, а на внутреннем сопротивлении упадет какое-то напряжение, так как в результате у нас получился делитель напряжения, так как нить лампы накаливания также имеет какое-то свое сопротивление. По закону Ома, чем больше сила тока в цепи, тем больше будет падение напряжения на внутреннем сопротивлении Rвн. Более подробно об этом эффекте можно прочитать в статье закон Ома для полной цепи, а также про входное и выходное сопротивление.

Если начертить график зависимости силы в цепи тока от напряжения на батарейке, то он будет выглядеть вот так:

Какой напрашивается вывод? Для того, чтобы замерить ЭДС батарейки, нам достаточно просто взять хороший мультиметр с высоким входным сопротивлением и замерять напряжение на клеммах батарейки.

То есть мы увидим, чем больше сила тока в цепи, то тем меньше напряжение на клеммах батарейки. Об этом более подробно я говорил в статье закон Ома для полной цепи.

Сторонние силы

В одной из прошлых тем (условия существования электрического тока) уже затрагивался вопрос о необходимости источника питания для длительного поддержания существования электрического тока. Сам по себе ток, конечно же, можно получать и без таких источников питания. Например, разрядка конденсатора при вспышке фотоаппарата. Но такой ток будет слишком скоротечным (рис. 1).

Рис. 1. Кратковременный ток при взаимной разрядке двух разноименно заряженных электроскопов (Источник)

Кулоновские силы всегда стремятся свести разноименные заряды, выровняв тем самым потенциалы по всей цепи. А, как известно, для наличия поля и тока необходима разность потенциалов. Поэтому никак нельзя обойтись без каких-либо других сил, разводящих заряды и поддерживающих разность потенциалов.

Определение. Сторонние силы – силы неэлектрического происхождения, направленные на разведение зарядов.

Эти силы могут быть разной природы в зависимости от типа источника. В батареях они химического происхождения, в электрогенераторах – магнитного. Они-то и обеспечивают существование тока, так как работа электрических сил по замкнутому контуру всегда равна нулю.

Вторая задача источников энергии, помимо поддержания разности потенциалов, – это восполнение потерь энергии на столкновении электронов с другими частицами, вследствие чего первые теряют кинетическую энергию, а внутренняя энергия проводника повышается.

Сторонние силы внутри источника выполняют работу против электрических сил, разводя заряды в стороны, противоположные их естественному ходу (как они движутся во внешней цепи) (рис. 2).

Рис. 2. Схема действия сторонних сил

Аналогом действия источника питания можно считать водяной насос, который пускает воду против ее естественного хода (снизу вверх, в квартиры). Обратно же вода естественным образом под действием силы тяжести спускается вниз, но для непрерывной работы водоснабжения квартиры необходима непрерывная работа насоса.

Где используются разные виды ЭДС?

  1. Пьезоэлектрическая применяется при растяжении или сжатии материала. С помощью нее изготавливают кварцевые генераторы энергии и разные датчики.
  2. Химическая используется в гальванических элементах и аккумуляторах.
  3. Индукционная появляется в момент пересечения проводником магнитного поля. Ее свойства применяют в трансформаторах, электрических двигателях, генераторах.
  4. Термоэлектрическая образуется в момент нагрева контактов разнотипных металлов. Свое применение она нашла в холодильных установках и термопарах.
  5. Фото электрическая используется для продуцирования фотоэлементов.

Нюансы ручной цветовой разметки

Цветовая маркировка проводов с помощью кембрика

Ручная разметка применяется в момент использования проводов одинакового цвета в домах старой застройки. Перед началом работ составляется схема с цветовыми значениями проводников. В процессе укладки помечать токоведущие жилы можно:

  • стандартными кембриками;
  • кембриками с термоусадкой;
  • изоляционной лентой.

Правила допускают использование специальных наборов для маркировки. Точки установки маркеров для обозначения нуля и фазы указаны в ПУЭ и ГОСТе. Это концы провода и места его присоединения к шине.

Специфика разметки двухжильного провода

Термоусадочная трубка для проводов

Если подключение кабеля к сети уже сделано, можно использовать индикаторную отвертку. Сложность использования инструмента заключается в невозможности определения нескольких фаз. Их понадобится прозванивать мультиметром. Для предотвращения путаницы можно пометить электрический проводник цветом:

  • выбрать трубки с термоусадкой или изоленты для обозначения нуля и фазы;
  • работать с проводниками не по всей длине, а только на местах соединений и стыков.

Разметка трехжильного провода

При помощи мультиметра можно определить расположение фазы, ноля, и заземления

Для поиска фазы, заземления и нуля в трехжильном проводе целесообразно применять мультиметр. Его ставят на режим переменного напряжения и аккуратно щупами касаются фазы, потом – оставшихся жил. Показатели тестера следует записать и сравнить. В комбинации «фаза-земля» напряжение будет меньшим, чем в комбинации «фаза-ноль».

После уточнения линий можно делать маркировку. Понять, фаза – L или N, поможет соответствующая расцветка. У нуля она будет голубой или синей, у плюса – любой другой.

Порядок разметки пятипроводной системы

Электропроводка с трехфазной сети выполняется только пятижильным кабелем. Три проводника будут фазным, один – нейтральным, один – защитным заземлением. Цветовая маркировка применяется согласно нормативным требованиям. Для защиты используется желто-зеленая оплетка, для нуля – синяя или голубая, для фазы – из перечня разрешенных оттенков.

Как маркировать совмещенные провода

Для упрощения процесса монтажа проводки используются кабели с двумя или четырьмя жилами. Линия защиты тут соединяется с нейтралью. Буквенный индекс провода – PEN, где PE обозначает заземляющий, а N – нулевой проводник.

Согласно ГОСТу, используется особая цветовая маркировка. По длине совмещенный кабель будет желто-зеленым, а кончики и точки соединения – синими.

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Требования к расцветке проводки при монтаже

Расключение распредкоробки

От распредкороба на выключатель протягивается медный провод с одной или двумя жилами. Количество жил зависит от количества клавиш прибора. Разрываться должна фаза, а не ноль. В процессе работы допускается использовать для запитки проводник белого цвета, делая пометку на схеме.

Розетка подключается с учетом полярности. Рабочий ноль будет слева, фаза – с правой стороны. Заземление располагается посередине устройства и зажимается клеммой.

При наличии двух кабелей одинаковой расцветки можно найти фазу и нейтраль при помощи контрольки, индикаторной отвертки, мультиметра.

На электросхеме стоит указывать, что означает L и N, но в электрике их используется несколько. На однолинейной отображена силовая часть – тип питания, количество фаз на потребителя. Здесь целесообразно начертить одну засечку на однофазной сети, три – на трехфазной и указать провода цветом. Коммутационное и защитное оборудование помечается специальными символами.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

Электродвигатели и генераторы

Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.

По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.

В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.

Еще немного теории

При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:

I=E/(R+r),

где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.

Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.

При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме

При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника

Ссылка на основную публикацию