Чему равна масса молекулы азота(n2)?

Опыты Иоганна Лошмидта и Жана Перрена

В 1865 году австриец Иоганн Лошмидт провел ряд экспериментов, в результате которых получил средний диаметр молекул воздуха. Зная эту величину, он смог определить число молекул в единице объема. Опыты Лошмидта считаются первыми в истории по измерению количества молекул в газовых смесях.

В 1909 году француз Жан Перрен провел эксперименты, в результате которых определил количество молекул в разных газах для разных объемов. В 1926 году за эти эксперименты ему была присуждена Нобелевская премия по физике.

Перрен предложил за базовую единицу для любых химических расчетов взять количество атомов, которое содержится в 1 грамме атомарного водорода. Впоследствии это количество было им переопределено для 1/12 грамма углерода-12. Именно Перрен предложил назвать это значение — числом Авогадро.

Амедео Авогадро и его закон

В начале XIX века наукой уже было установлено, что все вещества состоят из крохотных частиц. Эти частицы называли атомами или молекулами. При этом оба термина использовались в качестве синонимов.

В это время известный итальянский адвокат, физик и математик Амедео Авогадро проводил ряд опытов с различными газами, включая воздух. Ученый пришел к удивительному выводу, который в настоящее время носит название закона Авогадро для газов. Сформулировать его можно так: при одинаковых условиях равные объемы газов содержат равное количество образующих их частиц. Под равными условиями понимают температуру и давление.

Заметим, что сам Авогадро не смог оценить количество указанных им частиц в газе для реальных объемов. Однако ценность этого закона огромна, поскольку он говорит о том, что независимо от химической природы атомов или молекул, газы ведут себя одинаковым образом.

Работы Авогадро не были восприняты всерьез известными в то время учеными Европы. Понадобилось несколько десятков лет, чтобы о них вспомнили снова.

Изотопы и их влияние на молярную и молекулярную массы

Приведенные в предыдущих пунктах статьи теоретические сведения и расчеты говорят, что молярная масса атома водорода равна 1 г/моль (атомарная — 1 а.е.м.). Если обратиться к таблице Менделеева, то вместо цифры 1 для H стоит значение 1,00794. Почему появляется расхождение с полученным нами числом?

Ответ на этот вопрос связан с существованием в природе изотопов — атомов, которые содержат одно и то же число протонов (электронов), но разное количество нейтронов. Поскольку массы протона и нейтрона приблизительно равны, то получаем, что массы изотопов химического элемента будут отличаться друг от друга. Например, дейтерий — водород, состоящий из нейтрона, протона и электрона, уже имеет атомарную массу 2 а.е.м.

Атомная масса, приведенная в периодической таблице под каждым элементом, это некоторая средняя величина M¯ по всем изотопам, встречающимся в природе. Ее можно рассчитать по формуле:

Здесь xi — относительное количество изотопа i в смеси, Mi — его атомная масса. Заметим, что эту формулу можно использовать для определения средней молярной массы газовой смеси.

Химические свойства азота

В молекуле азота химическая связь осуществляется за счет трех общих пар p-электронов, орбитали которых направлены по осям x,y,z.

Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры соединяющихся атомов, называются q-связью.

Ковалентная связь, возникающая при перекрывании орбиталей по обе стороны линии, связывающей центры соединяющихся атомов, называются п-связью. В молекуле азота имеется одна q-связь и две п-связи.

Рис. 2. Связи в молекуле азота.

Молекулярный азот – химически малоактивное вещество, это объясняется тройной связью между атомами азота и ее малой длиной

При нормальных условиях азот может реагировать только с литием:

6Li+N2=2Li3N (нитрит лития)

При высоких температурах связи между атомами ослабляются и азот становится более реакционноспособным. При нагревании он может взаимодействовать с другими металлами, например с магнием, кальцием, алюминием с образованием нитридов:

3Mg+N2=Mg3N2
3Ca+N2=Ca3N2
2Al+N2=2AlN

Пропуская азот через раскаленный кокс, получают соединение азота с углеродом – дициан.

Рис. 3. Формула дициан.

С оксидом алюминия и углеродом азот при высокой температуре также образует нитрид алюминия:

Al2O3+3C+N2=2AlN+3CO,

а с содой и углем – цианид натрия:

Na2CO3+4C+N2=2NaCN+3CO

При соприкосновении с водой многие нитриды полностью гидролизуются с образованием аммиака и гидроксида металла:

Mg3N2+6H2O=3Mg(OH)2 +2NH3

При температуре электрической дуги (3000-4000 градусов) азот реагирует с кислородом:

N2+O2=2NO

При высокой температуре карбид кальция CaC2 поглощает азот с образования цианамида кальция:

CaC2+N2=CaCN2+C

Эту реакцию использовали в одном из первых методов промышленного связывания азота воздуха.

В присутствии катализатора при высокой температуре и давлении азот способен реагировать с водородом:

N2+3H2=2NH3

Что мы узнали?

Азот – химический элемент, способный проявлять валентность III и IV. Так же в статье рассмотрены физические и химические свойства азота, и дается характеристика этого элемента и реакции, в которые этот элемент способен вступать при нормальных условиях и под действием катализаторов.

Как рассчитать

Чтобы выразить относительную атомную массу математически, следует определить, что 1/2 часть углерода или одна атомная единица массы равна 1,66⋅10−24 г. Следовательно, формула относительной атомной массы имеет следующий вид:

Ar(X) = ma(X) / 1,66⋅10−24,

где ma – абсолютная атомная масса вещества.

Относительная атомная масса химических элементов указана в периодической таблице Менделеева, поэтому её не нужно рассчитывать самостоятельно при решении задач. Относительные атомные массы принято округлять до целых. Исключение составляет хлор. Масса его атомов равна 35,5.

Следует обратить внимание, что при расчёте относительной атомной массы элементов, имеющих изотопы, учитывается их среднее значение. Атомная масса в этом случае высчитывается следующим образом:. Ar = ΣAr,ini,

Ar = ΣAr,ini,

где Ar,i – относительная атомная масса изотопов, ni – содержание изотопов в природных смесях.

Например, кислород имеет три изотопа – 16О,17О, 18О. Их относительная масса равна 15,995, 16,999, 17,999, а их содержание в природных смесях – 99,759 %, 0,037 %, 0,204 % соответственно. Поделив проценты на 100 и подставив значения, получим:

Ar = 15,995 ∙ 0,99759 + 16,999 ∙ 0,00037 + 17,999 ∙ 0,00204 = 15,999 а.е.м.

Обратившись к периодической таблице, легко найти это значение в клетке кислорода.

Рис. 3. Таблица Менделеева.

Относительная молекулярная масса – сумма масс атомов вещества:

Mr = ΣAr.

При определении значения относительной молекулярной массы учитываются индексы символов. Например, вычисление массы H2CO3 выглядит следующим образом:

Mr = 1 ∙ 2 + 12 + 16 ∙ 3 = 62 а. е. м.

Зная относительную молекулярную массу, можно вычислить относительную плотность одного газа по второму, т.е. определить, во сколько раз одно газообразное вещество тяжелее второго. Для этого используется уравнение D(y)x = Mr(х) / Mr(y).

Что мы узнали?

Из урока 8 класса узнали об относительной атомной и молекулярной массе. За единицу относительной атомной массы принята 1/12 часть массы углерода, равная 1,66⋅10−24 г. Для вычисления массы необходимо абсолютную атомную массу вещества разделить на атомную единицу массы (а. е. м.). Значение относительной атомной массы указано в периодической системе Менделеева в каждой клетке элемента. Молекулярная масса вещества складывается из суммы относительных атомных масс элементов.

Понятие о молекулярной массе

Исходя из названия, понятно, что молекулярная масса — это масса одной молекулы некоторого химического вещества. В отличие от молярной массы, эта величина выражается в СИ в килограммах (а.е.м. на практике).

Используя пример выше с молекулярным водородом, можно легко рассчитать массу молекулы H2. Поскольку масса NA молекул равна 2 грамма, тогда для одной молекулы получаем:

Для атомарного водорода, который имеет в два раза меньшую массу, найденная величина будет также в два раза меньше, то есть:

Как видно, типичные массы атомов и молекул очень малы. С ними так же неудобно проводить вычисления, как и с большими числами. Поэтому была введена новая единица измерения, которая называется атомной единицей массы, или сокращенно а. е. м. Одна а. е. м. соответствует массе протона, то есть MH.

Благодаря такому определению молярная и молекулярная массы совпадают друг с другом численно, хотя единицы их измерения разные. Например, для того же водорода получаем, что молярная масса равна 2 г/моль, а молекулярная — 2 а.е.м.

Отметим, что эти величины для каждого химического элемента измерены и приведены в таблице Менделеева.

Преимущества

Жидкий азот безопаснее, чем фреон. Последний, являющийся смесью метана и этана с замещенными атомами водорода атомами хлора и фтора, выделяет ядовитые вещества при сильном повышении температуры, из-за чего может становиться токсичным для работающих с ним людей. Плюсами являются также взрывная и пожарная безопасность.

Газ распространен в природе, что делает простой его добычу. Не приходится прилагать большое количество усилий, использовать слишком дорогую технику. По этой причине стоимость азота не слишком велика. Дешевле обойдутся и работы с его применением.

Хранить данный газ, транспортировать его нетрудно. При перевозке либо переноске требуется лишь избегать падения баллонов, исключать удары содержащих азот емкостей друг о друга и не допускать резких колебаний температурного режима (это может привести к изменению давления в баллоне).

В промышленности можно использовать не только газообразный, но и жидкий вариант. Транспортируют его в черных баллонах, выдерживающих не менее 150 атмосфер: под таким давлением вещество хранится. Его чаще всего используют как хладагент; возможно применять в криотерапии, в пищевой промышленности для создания добавки Е941, в производстве кокса.

Плотность азота N2 и его теплофизические свойства

В таблице указана плотность азота и его теплофизические свойства в газообразном состоянии в зависимости от температуры и давления. Теплофизические свойства азота даны при температуре от 0 до 1000°С и давлении от 1 до 100 атмосфер.

Как видно по данным таблицы, такие свойства азота, как температуропроводность и кинематическая вязкость сильно зависят от температуры. При увеличении давления эти свойства азота уменьшают свои значения, при этом значительно возрастает плотность азота. Например, при атмосферном давлении и температуре 0°С плотность азота равна 1,21 кг/м3, а при росте давления в 100 раз плотность азота увеличивается до значения 122,8 кг/м3 при этой же температуре.

Удельная теплоемкость азота с ростом температуры этого газа увеличивается. При увеличении давления удельная теплоемкость азота также растет. Например, при температуре 0°С и атмосферном давлении удельная теплоемкость азота равна 1039 Дж/(кг·град), а при сжатии этого газа до давления в 100 атмосфер, она составит величину 1242 Дж/(кг·град) при той же температуре .

Следует отметить, что при высоких температурах (около 1000°С ) влияние давления на величину удельной теплоемкости азота снижается. Так, при температуре 1000°С и давлении 1 и 100 атм. значение теплоемкости будет соответственно равно 1215 и 1219 Дж/(кг·град) .

В таблице даны следующие свойства азота:

  • плотность азота γ, кг/м3;
  • удельная теплоемкость Cp, кДж/(кг·град);
  • коэффициент теплопроводности λ, Вт/(м·град);
  • динамическая вязкость μ, Па·с;
  • температуропроводность a, м2/с;
  • кинематическая вязкость ν, м2/с;
  • число Прандтля Pr.

Общая характеристика азота

В периодической таблице азот располагается под 7 номером. Обозначают его латинской буквой N от слова nitrogenium. Располагается во втором периоде, в группе V(A). Заряд равняется 7. Данный неметалл чаще всего встречается в свободном состоянии. Он на 78,2% составляет атмосферу Земли. Высоко его содержание также в атмосферах Плутона, Титана, Тритона. Добывают чаще всего из воздуха.

Из неорганических соединений в большом количестве встречается лишь натриевая селитра, пласты которой можно обнаружить около Тихого океана на территории Чили. Иногда за год добывают до 3000000 т данного вещества. Небольшое его количество находится в почве в виде солей азотной кислоты. Органические соединения часто содержат азот в составе. Он присутствует во многих белках и нуклеиновых кислотах, входящих в состав любого живого организма.

В виде простого вещества имеет такие характерные свойства, как газообразное состояние, отсутствие запаха, вкуса или цвета. Этот газ имеет меньшую массу, чем воздух: 1 л весит всего 1,25 г.

Азот редко оказывает негативное воздействие на состояние человека либо животных из-за своей инертности. В слишком большой концентрации он, однако, может навредить: стать причиной появления удушья, опьянения, в тяжелых случаях — кессонной болезни. Соединения этого вещества могут быть токсичны для живых организмов.

Область применения при сварке

Применение азота в сварке не очень широко. Он значительно уступает по количеству общего количества операций другим газам, несмотря на то, что его легче добывать, и он обходится довольно дешево для индустрии. Это обусловлено тем, что азот активно взаимодействует со многими различными металлами. При контакте со сплавами нитриды и эти химические соединения могут навредить крепости и надежности шва. Из-за того, что прочность сварных соединений сильно страдает, приходится заменять его на другие, более нейтральные газы. При сварке сталей, различных сплавов и даже нержавейки азот не нашел должного применения, так как химические свойства азота обеспечивают слишком высокую активность по отношению к ним.

Баллон с азотом для сварки

Азотодуговая сварка лучше всего проявляет свои свойства при работе с медью. Именно с медью данный газ не образует ни каких соединений и практически не взаимодействует. Если сравнивать этот способ с аргонодуговой сваркой, то здесь лишь потребуется увеличить количество расходуемого газа, так как он не столь экономичен и потребуется, примерно, на треть больше вещества. С учетом того, что он стоит значительно ниже аргона, то в экономическом плане это выходит даже выгоднее. Помимо меди, другие металлы профессионалы предпочитают варить остальными инертными газами.

Моль

Все вещества состоят из атомов и молекул

В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ

Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро NA, если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.

Постоянная Авогадро NA = 6.02214076×10²³ моль⁻¹. Число Авогадро — 6.02214076×10²³.

Другими словами моль — это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.

Свойства

Плотность вещества в газообразном состоянии составляет 1,25 кг/м³. У жидкой формы значение показателя равняется 808 кг/м³. На внешней оболочке располагается 5 электронов; степень окисления может изменяться в пределах от 5 до -3. Формула молекулы — N2; атомы связаны между собой тройной связью. Теплота плавления составляет 25,5 кДж/кг. Газовая постоянная азота — 297. Температура кипения составляет 195,8 градусов по шкале Цельсия.

При -209,86 градусах Цельсия вещество замерзает, переходит в твердое состояние. Внешне выглядит как крупные кристаллы белого цвета либо масса, похожая на снег. Существует 3 кристаллические модификации в твердом состоянии.

Диссоциация в нормальных условиях почти отсутствует. Даже при сильном нагревании она остается низкой: при 3000 градусах по Цельсию составляет лишь 1%.

Ссылка на основную публикацию