Гелий

Физические свойства

Атомная масса гелия-3 равна 3,016 (у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются). Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К). Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как у гелия-4 она равна 124,73 г/л, в 2 раза больше. Удельная теплота испарения равна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).

Газообразный гелий-3 при нормальных условиях (T = 273,15 K = 0 °C, P = 101 325 Па) имеет плотность 0,1346 г/л. Соответственно, объём одного грамма гелия-3 при н.у. равен 7,43 литра.

Получение

В настоящее время гелий-3 не добывается из природных источников (на Земле доступны незначительные количества гелия-3, чрезвычайно трудные для добычи), а создаётся при распаде искусственно полученного трития.

Тритий производится отдельными государствами как компонент для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах. Несколько сотен тысяч литров гелия-3 были наработаны в рамках оружейных ядерных программ, однако эти запасы уже недостаточны для существующего в США спроса. Дополнительно около 8 тыс. литров гелия-3 в год получают из распада запасов трития в США. В связи с растущей нехваткой гелия-3 рассматривались такие ранее экономически нецелесообразные возможности его производства, как получение в водных ядерных реакторах, выделение из продуктов работы тяжеловодных ядерных реакторов, производство трития или гелия-3 на ускорителях частиц, экстракция естественного гелия-3 из природного газа или атмосферы.

Фантазии на тему добычи гелия-3 на Луне

Главы различных космических ведомств иногда делятся с общественностью своими фантазиями на тему добычи гелия-3 на Луне. Как правило это подразумевает необходимость вложений в строительство Лунной станции. К примеру, в январе 2006 года глава РКК «Энергия» Николай Севастьянов заявил, что Россия планирует создать постоянную базу на Луне и отработать транспортную схему по доставке на Землю гелия-3 уже к 2015 году (при условии достаточного финансирования), а ещё через 5 лет начать промышленную добычу изотопа[значимость факта?]. По состоянию на 2019 год постоянная база еще не была открыта.

В ноябре 2018 года глава «Роскосмоса» Дмитрий Рогозин вновь подтвердил возможность использования гелия-3 как основы для ракетного топлива; при этом, одновременно с Дмитрием Рогозиным, академик РАН Лев Зелёный заявил о практической бесполезности добычи гелия-3: «…если человечество когда-нибудь решит задачу удержания сверхгорячей плазмы, нам уже не понадобится никакой лунный гелий-3, обойдемся бором. Так что пока с колумбовыми обещаниями у нас сложности, сильно обогатиться за счет Луны в материальном плане вряд ли получится».

НАСА также разрабатывала эскизные проекты гипотетических установок по переработке реголита и выделению гелия-3.

Гелий-3 является побочным продуктом реакций, протекающих на Солнце, и в некотором количестве содержится в солнечном ветре и межпланетной среде. Попадающий в атмосферу Земли из межпланетного пространства гелий-3 быстро диссипирует обратно, его концентрация в атмосфере чрезвычайно низка.

Луна, у которой нет атмосферы, сохраняет значительные количества гелия-3 в поверхностном слое, по отдельным оценкам до 500 тыс. тонн, по другим — около 2,5 млн тонн.

Гипотетически, при термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 (по максимальным оценкам) могло бы хватить примерно на пять тысячелетий. Основной проблемой (если проигнорировать проблему реализуемости управляемых термоядерных реакторов с подобным горючим) остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать на месте не менее 100 млн тонн грунта.

гелий

Реакции вещества:

  1. При давлении выше 140 ГПа реагирует с натрием с образованием соединения Na2He, имеющего электридную структуру, которое распадается ниже 113 ГПа.

Применение:

Используется для замены азота в воздухе для дыхания водолазов, что позволяет избежать кесонной болезни. Для наполнения дирижаблей. Смесь гелия с кислородом используется для лечения астмы, удуший.

Дополнительная информация:

Электронная конфигурация атома 1s2.

Камерлинг Оннес исследовал равновесие жидкость газ в системе водород — гелий при 20,1 К, то есть ниже критической температуры водорода (33,2 К) и выше критической температуры гелия (5,2 К). При этой температуре растворимости газообразного гелия в жидком водороде и жидкого водорода в газообразном гелии малы. При низких давлениях плотность жидкой фазы была больше плотности газовой фазы и жидкая фаза располагалась под газовой фазой. Но при давлении выше 49 атм плотность газовой фазы стала больше плотности жидкой фазы, и обе фазы поменялись местами: газовая фаза расположилась под жидкой. Оседание газа в жидкости получило название баротропного явления.

Гелий — единственное вещество не затвердевающее при обычном давлении даже вблизи 0 K, он кристаллизуется только под давлением выше 2,5 МПа. При 2,17 К и обычном давлении претерпевает фазовый переход второго рода (от гелия I к гелию II), сопровождающийся резким изменением ряда свойств: теплоемкости, вязкости, плотности. Для гелия II характерна сверхтекучесть — способность протекать без трения через узкие щели. Гелий II также обладает огромной теплопроводностью. поэтому в отличие от бурно кипящего гелия I, выглядит как спокойная жидкость с ясно видимым мениском.

Свойства 3He значительно отличаются от свойств 4He. 3He и 4He неограниченно смешиваются друг с другов выше критической точки смешения равной 0,88 К. Ниже этой точки жидкость расслаивается на 2 фазы с различной концентрацией 3He. 3He имеет следующие физические константы: температура кипения 3,19 К, критическая температура 3,35 К.

Выше -250 °С при расширении не охлаждается, а нагревается. Жидкий гелий практически не растворяет другие вещества.

Источники информации:

  1. Handbook of Chemistry and Physics. — CRC Press, Inc., 2002. — С. 11-51
  2. Seidell A. Solubilities of inorganic and metal organic compounds. — 3ed., vol.1. — New York: D. Van Nostrand Company, 1940. — С. 601-604
  3. Гринвуд Н., Эрншо А. Химия элементов. — Т.2. — М.: БИНОМ. Лаборатория знаний, 2008. — С. 235
  4. Гурвич Я.А. Справочник молодого аппаратчика-химика. — М.: Химия, 1991. — С. 50
  5. Девяткин В.В., Ляхова Ю.М. Химия для любознательных, или о чем не узнаешь на уроке. — Ярославль: Академия Холдинг, 2000. — С. 36
  6. Краткая химическая энциклопедия. — Т. 1: А-Е. — М.: Советская энциклопедия, 1961. — С. 827-832
  7. Некрасов Б.В. Основы общей химии. — Т.1. — М.: Химия, 1973. — С. 44-46
  8. Некрасов Б.В. Основы общей химии. — Т.2. — М.: Химия, 1973. — С. 540-541 (свойства He-3)
  9. Рабинович В.А., Хавин З.Я. Краткий химический справочник. — Л.: Химия, 1977. — С. 24, 61
  10. Справочник по растворимости. — Т.1, Кн.1. — М.-Л.: ИАН СССР, 1961. — С. 553-557
  11. Фастовский В.Г., Ровинский А.Е., Петровский Ю.В. Инертные газы. — М.: Атомиздат, 1972
  12. Физические величины. — Под ред. Григорьева И.С., Мейлихова Е.З. — М.: Энергоатомиздат, 1991. — С. 994
  13. Химическая энциклопедия. — Т.1. — М.: Советская энциклопедия, 1988. — С. 513-514
  • Написать вопрос на форум сайта (требуется зарегистрироваться на форуме). Там вам ответят или подскажут где вы ошиблись в запросе.
  • Отправить пожелания для базы данных (анонимно).

Жидкий гелий-3

См. также: Сверхтекучесть

Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году.
В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм (ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов). За открытие сверхтекучести гелия-3 в 1996 году Д. Ошерову, Р. Ричардсону и Д. Ли была присуждена Нобелевская премия по физике.

В 2003 году Нобелевской премией по физике отмечены А. А. Абрикосов, В. Л. Гинзбург и Э. Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3.

Распространённость

Природная изотопная распространённость гелия-3 в атмосфере Земли составляет 0,000137 % (1,37 частей на миллион по отношению к гелию-4); в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.. Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица представляет собой ядро гелия-4). В отличие от более тяжёлого изотопа, гелий-3 не появляется в процессах радиоактивного распада (за исключением распада космогенного трития). Бо́льшая часть гелия-3 на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу; его изотопная распространённость в мантийной магме составляет 4—10 частей на миллион частей гелия-4, а некоторые материалы мантийного происхождения имеют в 10—40 раз большее соотношение, чем в атмосфере. Однако его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько килограммов в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли.

В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта (в тончайшем приповерхностном слое) содержит порядка 0,01 г гелия-3 (до 50 ppb) и 28 г гелия-4; это изотопное соотношение (~0,043 %) значительно выше, чем в земной атмосфере.

В искусстве

В фантастических произведениях (играх, фильмах, аниме) гелий-3 иногда выступает в качестве основного топлива и как ценный ресурс, добываемый в том числе на Луне:

  • В аниме «Planetes» (2003—2004) гелий-3 используется как топливо для термоядерных реакторов и т. д.
  • В серии игр «Mass Effect» (2007—2013) гелий-3 используется в качестве топлива для космических кораблей.
  • Основой сюжета британского научно-фантастического фильма «Луна 2112» (2009) является работа горнодобывающего комплекса компании «Лунар». Комплекс обеспечивает добычу гелия-3, с помощью которого удалось остановить катастрофический энергетический кризис на Земле.
  • В политической комедии «Железное небо» (2012) лунный гелий-3 стал причиной международного ядерного конфликта за право его добычи.
  • В фантастической саге Иена Макдональда «Луна» (2015—2017) гелий-3 используется как топливо для термоядерных установок.

Использование

Бо́льшая часть производимого в мире гелия-3 используется для наполнения газовых детекторов нейтронов. Остальные применения пока не выходят за пределы научных лабораторий.

Счётчики нейтронов

Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В этих счётчиках происходит реакция

n + 3He → 3H + 1H + 0,764 МэВ.

Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

Значительно возросшее после 2001 года производство нейтронных мониторов (для обнаружения незаконно перевозимых делящихся материалов и предотвращения ядерного терроризма) привело к сокращению запасов гелия-3; так, запасы, принадлежащие правительству США, с 1990 по 2001 год монотонно росли со 140 до 235 тыс. литров н.у., но к 2010 году уменьшились до 50 тыс. л н.у.

Получение сверхнизких температур

Основная статья: Рефрижератор растворения

Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур.

Медицина

Поляризованный гелий-3 (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.

Гелий-3 как гипотетическое термоядерное топливо

Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n.
К этим преимуществам относятся:

В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
Получаемые протоны, в отличие от нейтронов, легко улавливаются при помощи электрических и магнитных полей и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе;
Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.

Недостатком гелий-дейтериевой реакции следует считать практическую невозможность поддержания требуемых температур. При температурах менее 109 К термоядерная реакция слияния ядер дейтерия между собой протекает гораздо охотнее, и реакции между дейтерием и гелием-3 не происходит. При этом теплопотери за счет излучения быстро возрастают с температурой и горячая плазма будет остывать быстрее, чем сможет восполнять потери энергии за счет термоядерных реакций.

Список химических элементов Таблицы Менделеева

Список химических элементов упорядочен в порядке возрастания атомных номеров, приводятся обозначения элемента в Таблице Менделеева, латинское и русское названия.

Z Символ Name Название
1 H Hydrogen Водород
2 He Helium Гелий
3 Li Lithium Литий
4 Be Beryllium Бериллий
5 B Boron Бор
6 C Carbon Углерод
7 N Nitrogen Азот
8 O Oxygen Кислород
9 F Fluorine Фтор
10 Ne Neon Неон
11 Na Sodium Натрий
12 Mg Magnesium Магний
13 Al Aluminium Алюминий
14 Si Silicon Кремний
15 P Phosphorus Фосфор
16 S Sulfur Сера
17 Cl Chlorine Хлор
18 Ar Argon Аргон
19 K Potassium Калий
20 Ca Calcium Кальций
21 Sc Scandium Скандий
22 Ti Titanium Титан
23 V Vanadium Ванадий
24 Cr Chromium Хром
25 Mn Manganese Марганец
26 Fe Iron Железо
27 Co Cobalt Кобальт
28 Ni Nickel Никель
29 Cu Copper Медь
30 Zn Zinc Цинк
31 Ga Gallium Галлий
32 Ge Germanium Германий
33 As Arsenic Мышьяк
34 Se Selenium Селен
35 Br Bromine Бром
36 Kr Krypton Криптон
37 Rb Rubidium Рубидий
38 Sr Strontium Стронций
39 Y Yttrium Иттрий
40 Zr Zirconium Цирконий
41 Nb Niobium Ниобий
42 Mo Molybdenum Молибден
43 Tc Technetium Технеций
44 Ru Ruthenium Рутений
45 Rh Rhodium Родий
46 Pd Palladium Палладий
47 Ag Silver Серебро
48 Cd Cadmium Кадмий
49 In Indium Индий
50 Sn Tin Олово
51 Sb Antimony Сурьма
52 Te Tellurium Теллур
53 I Iodine Иод
54 Xe Xenon Ксенон
55 Cs Caesium Цезий
56 Ba Barium Барий
57 La Lanthanum Лантан
58 Ce Cerium Церий
59 Pr Praseodymium Празеодим
60 Nd Neodymium Неодим
61 Pm Promethium Прометий
62 Sm Samarium Самарий
63 Eu Europium Европий
64 Gd Gadolinium Гадолиний
65 Tb Terbium Тербий
66 Dy Dysprosium Диспрозий
67 Ho Holmium Гольмий
68 Er Erbium Эрбий
69 Tm Thulium Тулий
70 Yb Ytterbium Иттербий
71 Lu Lutetium Лютеций
72 Hf Hafnium Гафний
73 Ta Tantalum Тантал
74 W Tungsten Вольфрам
75 Re Rhenium Рений
76 Os Osmium Осмий
77 Ir Iridium Иридий
78 Pt Platinum Платина
79 Au Gold Золото
80 Hg Mercury Ртуть
81 Tl Thallium Таллий
82 Pb Lead Свинец
83 Bi Bismuth Висмут
84 Po Polonium Полоний
85 At Astatine Астат
86 Rn Radon Радон
87 Fr Francium Франций
88 Ra Radium Радий
89 Ac Actinium Актиний
90 Th Thorium Торий
91 Pa Protactinium Протактиний
92 U Uranium Уран
93 Np Neptunium Нептуний
94 Pu Plutonium Плутоний
95 Am Americium Америций
96 Cm Curium Кюрий
97 Bk Berkelium Берклий
98 Cf Californium Калифорний
99 Es Einsteinium Эйнштейний
100 Fm Fermium Фермий
101 Md Mendelevium Менделевий
102 No Nobelium Нобелий
103 Lr Lawrencium Лоуренсий
104 Rf Rutherfordium Резерфордий
105 Db Dubnium Дубний
106 Sg Seaborgium Сиборгий
107 Bh Bohrium Борий
108 Hs Hassium Хассий
109 Mt Meitnerium Мейтнерий
110 Ds Darmstadtium Дармштадтий
111 Rg Roentgenium Рентгений
112 Cn Copernicium Коперниций
113 Nh Nihonium Нихоний
114 Fl Flerovium Флеровий
115 Mc Moscovium  Московий
116 Lv Livermorium Ливерморий
117 Ts Tennessine Теннесин
118 Og Oganesson Оганессон
Ссылка на основную публикацию