Реферат на тему «законы кеплера»

Другие достижения Кеплера

В математике он нашёл способ определения объёмов разнообразных тел вращения, предложил первые элементы интегрального исчисления, подробно проанализировал симметрию снежинок, работы Кеплера в области симметрии нашли позже применение в кристаллографии и теории кодирования. Он составил одну из первых таблиц логарифмов, впервые ввёл важнейшее понятие бесконечно удалённой точки, ввёл понятие фокуса конического сечения и рассмотрел проективные преобразования конических сечений, в том числе меняющие их тип.

В физике ввёл термин инерция как прирождённое свойство тел сопротивляться приложенной внешней силе, вплотную подошёл к открытию закона тяготения, хотя и не пытался выразить его математически, первый, почти на сто лет раньше Ньютона, выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов.

В оптике: с его трудов начинается оптика как наука. Он описывает преломление света, рефракцию и понятие оптического изображения, общую теорию линз и их систем. Кеплер выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости.

К астрологии у Кеплера было отношение двойственное. Приводят по этому поводу два его высказывания. Первое: «Конечно, эта астрология — глупая дочка, но, Боже мой, куда бы делась её мать, высокомудрая астрономия, если бы у неё не было глупенькой дочки! Свет ведь ещё гораздо глупее и так глуп, что для пользы этой старой разумной матери глупая дочка должна болтать и лгать. И жалованье математиков так ничтожно, что мать, наверное бы, голодала, если бы дочь ничего не зарабатывала». И второе: «Люди ошибаются, думая, что от небесных светил зависят земные дела». Но, тем не менее, Кеплер составлял гороскопы для себя и своих близких.

  • Вперёд >

Решение уравнения Кеплера

Решение уравнения Кеплера в эллиптическом и гиперболическом случаях существует и единственно при любых вещественных M. Для круговой орбиты (e = 0) уравнение Кеплера принимает тривиальный вид М = E. В общем виде Уравнение Кеплера трансцендентное. Оно не решается в алгебраических функциях. Однако, его решение можно найти различными способами с помощью сходящихся рядов. Общее решение уравнения Кеплера можно записать с помощью рядов Фурье:

E=M+2⋅∑n=1n1nJn(ne)⋅sin⁡nM{\displaystyle E=M+2\cdot \sum _{n=1}^{n}{\frac {1}{n}}J_{n}\left(n\,e\,\right)\cdot \sin {nM}},

где

Jm(x)=1π∫πcos⁡(mE−xsin⁡E)dE{\displaystyle J_{m}\left(x\right)={\frac {1}{\pi }}\int \limits _{0}^{\pi }\cos \left(mE-x\sin {E}\right)dE}

— функция Бесселя.

Этот ряд сходится, когда величина ε не превышает значения предела Лапласа.

Приближённые методы

Среди численных методов решения уравнения Кеплера часто используются метод неподвижной точки («метод простой итерации») и метод Ньютона. Для эллиптического случая в методе неподвижной точки за начальное значение E можно взять M, а последовательные приближения имеют следующий вид:

En+1=esin⁡En+M{\displaystyle E_{n+1}=e\,\sin E_{n}+M}

В гиперболическом случае метод неподвижной точки подобным образом использовать нельзя, однако этот метод даёт возможность вывести для такого случая другую формулу приближений (с гиперболическим арксинусом):

Hn+1=Arsh⁡Hn+Me{\displaystyle H_{n+1}=\operatorname {Arsh} {\frac {H_{n}+M}{e}}}

Законы движения планет Кеплера

Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 г. читать лекции по математике в университете города Граца (сейчас это Австрия). В Граце Кеплер провёл 6 лет. Здесь в 1596 г. вышла в свет его первая книга «Тайна мира». В ней Кеплер попытался найти тайную гармонию Вселенной, для чего сопоставил орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные «платоновы тела» (правильные многогранники). Орбиту Сатурна он представил как круг (ещё не эллипс) на поверхности шара, описанного вокруг куба. В куб в свою очередь был вписан шар, который должен был представлять орбиту Юпитера. В этот шар был вписан тетраэдр, описанный вокруг шара, представлявшего орбиту Марса и т. д. Эта работа после дальнейших открытий Кеплера утратила своё первоначальное значение (хотя бы потому, что орбиты планет оказались не круговыми); тем не менее, в наличие скрытой математической гармонии Вселенной Кеплер верил до конца жизни, и в 1621 г. переиздал «Тайну мира», внеся в нее многочисленные изменения и дополнения.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения. Особо ценной была систематичность измерений.

На протяжении нескольких лет Кеплер внимательно изучает данные Браге и в результате тщательного анализа приходит к выводу, что траектория движения Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце — положение, известное сегодня как первый закон Кеплера.

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), — большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно , эллипс превращается в окружность.

Дальнейший анализ приводит ко второму закону. Радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Это означало, что чем дальше планета от Солнца, тем медленнее она движется.

Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

С этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

, где и  — периоды обращения двух планет вокруг Солнца, а и   — длины больших полуосей их орбит.

Ньютон позднее установил, что третий закон Кеплера не совсем точен — в него входит и масса планеты: , где  — масса Солнца, а и  — массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Значение открытий Кеплера в астрономии

Открытые Кеплером три закона движения планет полностью и точно объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую — эллипс. Второй закон установил, как меняется скорость планеты при удалении или приближении к Солнцу, а третий позволяет рассчитать эту скорость и период обращения вокруг Солнца.

Хотя исторически кеплеровская система мира основана на модели Коперника, фактически у них очень мало общего (только суточное вращение Земли). Исчезли круговые движения сфер, несущих на себе планеты, появилось понятие планетной орбиты. В системе Коперника Земля всё ещё занимала несколько особое положение, поскольку только у неё не было эпициклов. У Кеплера Земля — рядовая планета, движение которой подчинено общим трём законам. Все орбиты небесных тел — эллипсы, общим фокусом орбит является Солнце.

Кеплер вывел также «уравнение Кеплера», используемое в астрономии для определения положения небесных тел.

Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Но в бесконечность Вселенной Кеплер не верил и в качестве аргумента предложил фотометрический парадокс (это название возникло позже): если число звёзд бесконечно, то в любом направлении взгляд наткнулся бы на звезду, и на небе не существовало бы тёмных участков. Кеплер, как и пифагорейцы, считал мир реализацией некоторой числовой гармонии, одновременно геометрической и музыкальной; раскрытие структуры этой гармонии дало бы ответы на самые глубокие вопросы.

Тихо Браге (1546-1601)

Тихо Браге — датский астроном, астролог и алхимик эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет.

Астрономией увлекся еще в детстве, вел самостоятельные наблюдения, создал некоторые астрономические инструменты. Однажды (11 ноября 1572 года), возвращаясь домой из химической лаборатории, он заметил в созвездии Кассиопеи необычайно яркую звезду, которой раньше не было. Он сразу понял, что это не планета, и бросился измерять её координаты. Звезда сияла на небе ещё 17 месяцев; вначале она была видна даже днём, но постепенно её блеск тускнел. Это была первая за 500 лет вспышка сверхновой в нашей Галактике. Событие это взбудоражило всю Европу, было множество истолкований этого «небесного знамения» — предсказывали катастрофы, войны, эпидемии и даже конец света. Появились и учёные трактаты, содержащие ошибочные утверждения о том, что это комета или атмосферное явление. В 1573 г. вышла первая его книга «О новой звезде». В ней Браге сообщал, что никакого параллакса (изменения видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя) у этого объекта не обнаружено, и это убедительно доказывает, что новое светило — звезда, и находится она не вблизи Земли, а по крайней мере на планетном расстоянии. С появлением этой книги Тихо Браге был признан первым астрономом Дании. В 1576 г. указом датско-норвежского короля Фредерика II Тихо Браге был пожалован в пожизненное пользование остров Вен (Hven), расположенный в 20 км от Копенгагена, а также выделены значительные суммы на постройку обсерватории и её содержание. Это было первое в Европе здание, специально построенное для астрономических наблюдений. Тихо Браге назвал свою обсерваторию «Ураниборг» в честь музы астрономии Урании (это название иногда переводят как «Небесный замок»). Проект здания составил сам Тихо Браге. В 1584 г. рядом с Ураниборгом был построен ещё один замок-обсерватория: Стьернеборг (в переводе с датского «Звёздный замок»). В скором времени Ураниборг стал лучшим в мире астрономическим центром, сочетавшим наблюдения, обучение студентов и издание научных трудов. Но в дальнейшем, в связи со сменой короля. Тихо Браге лишился финансовой поддержки, а затем последовало запрещение заниматься на острове астрономией и алхимией. Астроном покинул Данию и остановился в Праге.

Вскоре Ураниборг и все связанные с ним постройки были полностью разрушены (в наше время они частично восстановлены).

В это напряжённое время Браге пришёл к выводу, что ему нужен молодой талантливый помощник-математик для обработки накопленных за 20 лет данных. Узнав о гонениях на Иоганна Кеплера, незаурядные математические способности которого он уже успел оценить из их переписки, Тихо пригласил его к себе. Перед учеными стояла задача: вывести из наблюдений новую систему мира, которая должна прийти на смену как птолемеевской, так и коперниковой. Он поручил Кеплеру ключевую планету: Марс, движение которого решительно не укладывалось не только в схему Птолемея, но и в собственные модели Браге (по его расчётам, орбиты Марса и Солнца пересекались).

В 1601 г. Тихо Браге и Кеплер начали работу над новыми, уточнёнными астрономическими таблицами, которые в честь императора получили название «Рудольфовых»; они были закончены в 1627 г. и служили астрономам и морякам вплоть до начала XIX века. Но Тихо Браге успел только дать таблицам название. В октябре он неожиданно заболел и умер от неизвестной болезни.

Тщательно изучив данные Тихо Браге, Кеплер открыл законы движения планет.

Первый закон Кеплера (закон эллипсов)

Первый закон Кеплера.

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.
Форма эллипса и степень его сходства с окружностью характеризуется отношением e=ca{\displaystyle e={\frac {c}{a}}}, где c{\displaystyle c} — расстояние от центра эллипса до его фокуса (фокальное расстояние), a{\displaystyle {a}} — большая полуось. Величина e{\displaystyle e} называется эксцентриситетом эллипса. При c={\displaystyle c=0}, и, следовательно, e={\displaystyle e=0} эллипс превращается в окружность.

Доказательство первого закона Кеплера

Закон всемирного тяготения Ньютона гласит, что «каждый объект во Вселенной притягивает каждый другой объект по линии, соединяющей центры масс объектов, пропорционально массе каждого объекта, и обратно пропорционально квадрату расстояния между объектами». Это предполагает, что ускорение a{\displaystyle a} имеет форму

a=d2rdt2=f(r)r^.{\displaystyle \mathbf {a} ={\frac {d^{2}\mathbf {r} }{dt^{2}}}=f(r){\hat {\mathbf {r} }}.}

Вспомним, что в полярных координатах

drdt=r˙r^+rθ˙θ^,{\displaystyle {\frac {d\mathbf {r} }{dt}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},}
d2rdt2=(r¨−rθ˙2)r^+(rθ¨+2r˙θ˙)θ^.{\displaystyle {\frac {d^{2}\mathbf {r} }{dt^{2}}}=({\ddot {r}}-r{\dot {\theta }}^{2}){\hat {\mathbf {r} }}+(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}){\hat {\boldsymbol {\theta }}}.}

В координатной форме запишем

r¨−rθ˙2=f(r),{\displaystyle {\ddot {r}}-r{\dot {\theta }}^{2}=f(r),}
rθ¨+2r˙θ˙={\displaystyle r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}=0.}

Подставляя θ¨{\displaystyle {\ddot {\theta }}} и r˙{\displaystyle {\dot {r}}} во второе уравнение, получим

rdθ˙dt+2drdtθ˙=,{\displaystyle r{d{\dot {\theta }} \over dt}+2{dr \over dt}{\dot {\theta }}=0,}

которое упрощается

dθ˙θ˙=−2drr.{\displaystyle {\frac {d{\dot {\theta }}}{\dot {\theta }}}=-2{\frac {dr}{r}}.}

После интегрирования запишем выражение

ln⁡θ˙=−2ln⁡r+ln⁡ℓ,{\displaystyle \ln {\dot {\theta }}=-2\ln r+\ln \ell ,}
ln⁡ℓ=ln⁡r2+ln⁡θ˙,{\displaystyle \ln \ell =\ln r^{2}+\ln {\dot {\theta }},}
ℓ=r2θ˙,{\displaystyle \ell =r^{2}{\dot {\theta }},}

для некоторой константы ℓ{\displaystyle \ell }, которая является удельным угловым моментом (ℓ=r×v{\displaystyle \ell =\mathbf {r} \times \mathbf {v} }).

Пусть

r=1u,{\displaystyle r={\frac {1}{u}},}
r˙=−1u2u˙=−1u2dθdtdudθ=−ℓdudθ,{\displaystyle {\dot {r}}=-{\frac {1}{u^{2}}}{\dot {u}}=-{\frac {1}{u^{2}}}{\frac {d\theta }{dt}}{\frac {du}{d\theta }}=-\ell {\frac {du}{d\theta }},}
r¨=−ℓddtdudθ=−ℓθ˙d2udθ2=−ℓ2u2d2udθ2.{\displaystyle {\ddot {r}}=-\ell {\frac {d}{dt}}{\frac {du}{d\theta }}=-\ell {\dot {\theta }}{\frac {d^{2}u}{d\theta ^{2}}}=-\ell ^{2}u^{2}{\frac {d^{2}u}{d\theta ^{2}}}.}

Уравнение движения в направлении r^{\displaystyle {\hat {\mathbf {r} }}} становится равным

d2udθ2+u=−1ℓ2u2f(1u).{\displaystyle {\frac {d^{2}u}{d\theta ^{2}}}+u=-{\frac {1}{\ell ^{2}u^{2}}}f\left({\frac {1}{u}}\right).}

Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как

f(1u)=f(r)=−GMr2=−GMu2{\displaystyle f\left({1 \over u}\right)=f(r)=-\,{GM \over r^{2}}=-GMu^{2}}

где G{\displaystyle G} — универсальная гравитационная константа и M{\displaystyle M} — масса звезды.

В результате

d2udθ2+u=GMℓ2.{\displaystyle {\frac {d^{2}u}{d\theta ^{2}}}+u={\frac {GM}{\ell ^{2}}}.}

Это дифференциальное уравнение имеет общее решение:

u=GMℓ21+ecos⁡(θ−θ).{\displaystyle u={\frac {GM}{\ell ^{2}}}\left.}

для произвольных констант интегрирования e{\displaystyle e} и θ{\displaystyle \theta _{0}}.

Заменяя u{\displaystyle u} на 1/r{\displaystyle r} и полагая θ={\displaystyle \theta _{0}=0}, получим:

r=1u=ℓ2GM1+ecos⁡θ.{\displaystyle r={1 \over u}={\frac {\ell ^{2}/GM}{1+e\cos \theta }}.}

Мы получили уравнение конического сечения с эксцентриситетом e{\displaystyle e} и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.

Применение законов Кеплера

Пусть два тела с массами M и m находятся на расстоянии R друг от друга. Тогда энергия их взаимодействия равна

Полная энергия

Если тело находится в гравитационном поле и имеет некоторую скорость, то его полная энергия равна

Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Теорема вириала

В случае кругового движения кинети­ческая энергия в 2 раза меньше по модулю потенциальной. Поэтому

2Eк+Eп= 0

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.

При  Eпол r rmax . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы). Система с отрицательной полной энергией называется гравитационно связанной.

При  Eпол = 0  тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.

При  Eпол > 0  движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая космическая скорость

Это скорость движения по круговой траектории вблизи поверхности Земли

Это минимальная скорость, которую нужно сообщить телу, чтобы оно преодолело притяжение Земли и стало спутником. Для Земли примерно 7,9 км/с.

Вторая космическая скорость

Это скорость движения по параболической траектории

Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца. Находится из условия равенства нулю полной энергии системы. Для Земли примерно 11,2 км/с.

Третья космическая скорость

Это скорость, при которой тело преодолевает притяжение Солнца

где v – орбитальная скорость планеты, v2 – вторая космическая скорость для планеты. Для Земли примерно 16,6 км/с.

Задачи:

Звезда и планета обращаются вокруг общего неподвижного центра масс по круговым орбитам. Найдите массу планеты m, если известно, что скорость движения планеты равна v1, а скорость движения и период обращения звезды равны v2 и T соответственно.

Если бы все линейные размеры Солнечной системы были пропорционально сокращены так, чтобы среднее расстояние между Солнцем и Землей стало 1 м, то какова была бы продолжительность одного года? Считайте, что плотность небесных тел при этом не меняется.

Автоматическая станция обращается вокруг планеты Марс с периодом T = 18 ч. Максимальное удаление от поверхности Марса (в апоцентре) a = 25000 км, минимальное (в перицентре) p = 1380 км. По указанным параметрам орбиты станции определите отношение массы Марса к массе Земли. Радиус Марса rм = 3400 км, радиус Земли rз = 6400 км.

Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты 422 тыс. км.

Вычислить параболическую скорость на поверхности Луны, RЛ = 0.27 радиуса Земли, MЛ = 1/81 массы Земли.

http://ency.info/earth/etapi-astronomii/16-zakon

http://www.afportal.ru/taxonomy/term/128

Разделы

5Механика
Законы сохранения в механике
Элементы статики
Силы в природе
Основы динамики
Кинематика
2Механические колебания и волны
Механические колебания
Волны
2Молекулярная физика и термодинамика
Молекулярно-кинетическая теория
Термодинамика
3Электродинамика
Электрическое поле
Постоянный электрический ток
Магнитное поле
Электромагнитные колебания и волны
2Оптика
Геометрическая оптика
Волновая оптика
Основы специальной теории относительности
Квантовая физика
Физика атомов и ядра
19Учебники
67 класс
Физические величины
Масса и плотность
Силы в природе
Давление тел
Работа и энергия
Введение в термодинамику
68 класс
Молекулярно-кинетическая теория
Электронно-ионная теория
Постоянный электрический ток
Электромагнитные явления
Световые явления
Колебательные и волновые явления
79 класс
Введение в кинематику
Законы динамики
Равновесие тел
Механические колебания и волны
Атомная и ядерная физика
Введение в оптику
Введение в квантовую физику

Колдовство, война и гармония мира

Публикация этой книги принесла Кеплеру европейскую известность. Правда, его результаты признали далеко не все — например, их так и не принял (а возможно, и не понял) великий Галилей. Но такова судьба едва ли не всех великих открытий.

А жизнь продолжалась — и не всегда удачно. Умерла жена, оставив Кеплера с двумя маленькими детьми. Незадолго до этого с престола был смещен покровитель Кеплера Рудольф II. Осложнились отношения с лютеранскими священниками, которые заподозрили его в сочувствии кальвинизму. Из-за этого Кеплер не смог получить работу в Вюртемберге, куда хотел вернуться. После длительных переговоров Кеплеру предложили место математика в Линце, столице Верхней Австрии, на условиях, что он продолжит работу над таблицами планетных движений и займется местной картографией. Кеплер перебрался в Линц в 1612 году и прожил там 14 с половиной лет. Там он повторно женился, и супруга родила ему семерых детей.

На годы жизни в Линце пришелся длительный процесс по обвинению матери Кеплера в колдовстве, и ее защита отняла у ученого много здоровья и душевных сил. К тому же весной 1618 года началась Тридцатилетняя война, со временем захлестнувшая и Верхнюю Австрию.

Но Кеплер работал — и как работал! В 1619 году он опубликовал свой любимый труд «Пять книг гармонии мира». Об астрономии в нем говорится немного, больше о геометрии и философии. Однако именно на страницах этой книги появился третий закон Кеплера, который он открыл 15 мая 1618 года.

В 1617—1621 годах увидел свет публиковавшийся по частям самый обширный труд Кеплера «Очерки коперниканской астрономии», первый в мире учебник с детальным описанием гелиоцентрической модели мира. В этой книге законы планетных движений представлены как общие принципы, которым подчиняются все планеты; там же приведены результаты вычислений, с помощью которых Кеплер определил орбитальные параметры Меркурия, Венеры, Юпитера и Сатурна. В этой монографии впервые появился термин «инерция» — правда, не в том понимании, что сложилось после работ Галилея и Ньютона.

В конце пребывания в Праге после изнурительных переговоров с наследниками Тихо Браге Кеплер получил в свое распоряжение весь архив его наблюдений и у него наконец-то появилась возможность вплотную впрячься в составление астрономических таблиц, ради которых его взял на службу покойный Рудольф II. Эта исполинская работа была завершена во второй половине 1624 года.

Стереометрия винных бочек и путешествие на Луну

Кеплер известен прежде всего как астроном. Кроме упомянутых трудов он написал книгу о своих наблюдениях сверхновой звезды, вспыхнувшей в октябре 1604 года. Он первым объяснил возникновение приливов притяжением Луны и первым предположил, что Солнце вращается вокруг собственной оси. Однако его достижения отнюдь не ограничиваются небесной наукой. В 1604 и 1611 годах Кеплер опубликовал фундаментальные труды по оптике и физиологии зрения. Во второй работе, «Диоптрике», он не только объяснил принцип действия тогдашних подзорных труб с собирающим объективом и рассеивающим окуляром, но и предложил конструкцию трубы нового типа с двумя выпуклыми линзами (с тех пор ее называют кеплеровской). Его математические исследования, собранные в книге «Новая стереометрия винных бочек», изданной в 1615 году, проложили путь к интегральному исчислению. Кеплер первым вычислил общепринятый ныне год рождения Иисуса Христа (4 год новой эры) и написал изданный посмертно рассказ «Сновидение» о путешествие на Луну — вероятно, первое научно-фантастическое произведение в мировой литературе. И, наконец, кеплеровская идея объяснения свойств мироздания на основе фундаментальных геометрических симметрий возродилась в современной физике элементарных частиц. В общем, Кеплер был просто обыкновенным гением.

Конец пути

Выпустив в свет «Рудольфовы таблицы», Кеплер выполнил обязательства перед имперским правительством. Ученый мог остаться в прежней должности императорского математика ценой перехода в католичество, но решительно от этого отказался. Он готов был переехать в Англию, но в конце концов согласился пойти на службу математиком к австрийскому военачальнику Альбрехту Валленштейну.

Тема урока

Движение космических тел наблюдалось человеком очень давно. Еще в Древней Греции были придуманы модели движения планет Солнечной системы вокруг Солнца. Эти модели были очень сложными, поскольку видимое движение планет по небу описывается очень сложными линиями, они были названы эпициклами. Первая попытка описания вселенной была предпринята в Древней Греции во втором веке нашей эры Птолемеем (рис. 1).

Рис. 1. Геоцентрическая модель К. Птолемея (Источник)

Он предложил поместить Землю в центр Вселенной, а движения планет описывались большими и малыми кругами, которые были названы эпициклами Птолемея.

Только в XVI веке Коперник предложил заменить геоцентрическую модель мира Птолемея на гелиоцентрическую. То есть поместить Солнце в центр Вселенной и предположить, что все планеты и Земля вместе с ними движутся вокруг Солнца (рис. 2).

Рис. 2. Гелиоцентрическая модель Н.Коперника (Источник)

В начале XVII века немецкий астроном Иоганн Кеплер, обработав огромное количество астрономической информации, полученной датским астрономом Тихо Браге, предложил свои эмпирические законы, которые с тех пор носят название законы Кеплера.

Ссылка на основную публикацию