Напишите формулы работы силы упругости и трения, например aтяж = mgh1-mgh2

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы «говорит» реагирует опора. Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, «сопротивляются».

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε. Этот график называют диаграммой растяжения (рис. 10).

Рис. 10

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σп. Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σуп. Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала.

При дальнейшем увеличении нагрузки напряжение повышается (от точки D), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности. Обозначим его σпч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности.
Обозначив запас прочности через n, получим:

\(~n = \frac{\sigma_{np}}{\sigma}\) .

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Определение коэффициента жесткости

Коэффициент жесткости (он также имеет названия коэффициента упругости или пропорциональности) чаще всего записывается буквой k, но иногда можно встретить обозначение D или c. Численно жесткость будет равна величине силы, которая растягивает пружину на единицу длины (в случае СИ — на 1 метр). Формула для нахождения коэффициента упругости выводится из частного случая закона Гука:

k = F/x.

Чем больше величина жесткости, тем больше будет сопротивление тела к его деформации. Также коэффициент Гука показывает, насколько устойчиво тело к действию внешней нагрузки. Зависит этот параметр от геометрических параметров (диаметра проволоки, числа витков и диаметра намотки от оси проволоки) и от материала, из которого она изготовлена.

Единица измерения жесткости в СИ — Н/м.

Уровень B

1. Какая колба выдержит большее давление снаружи – круглая или плоскодонная?

2. Для чего рама велосипеда делается из полых трубок, а не сплошных стержней?

3. При штамповке детали иногда предварительно нагревают (горячая штамповка). Для чего это делают?

4. Укажите направление сил упругости, действующих на тела в указанных точках (рис. 1).

Рис. 1

5. Почему нет таблиц для коэффициента жесткости тела k, вроде таблиц для плотности вещества?

6. При какой кладке кирпичей (рис. 2) нижний из кирпичей окажется под большим напряжением?

Рис. 2

7. Сила упругости – сила переменная: она изменяется от точки к точке по мере удлинения. А как ведет себя ускорение, вызванное этой силой?

8. К закрепленной одним концом проволоке диаметром 2,0 мм подвешен груз массой 10 кг. Найдите механическое напряжение в проволоке.

9. На две вертикальные проволоки, диаметры которых отличаются в 3 раза, прикрепили одинаковые грузики. Сравните возникающие в них напряжения.

10. На рис. 3 дан график зависимости напряжения, возникающего в бетонной свае, от ее относительного сжатия. Найдите модуль упругости бетона.

Рис. 3

11. Проволока длиной 10 м с площадью сечения 0,75 мм2 при растяжении силой 100 Н удлинилась на 1,0 см. Определите модуль Юнга для материала проволоки.

12. С какой силой нужно растягивать закрепленную стальную проволоку длиной 1 м с площадью сечения 0,5 мм2, чтобы удлинить ее на 3 мм?

13. Определите диаметр стальной проволоки длиной 4,2 м, чтобы при действии продольной растягивающей силы, равной 10 кН, ее абсолютное удлинение было равно 0,6 см?

14. Определите по графику (рис. 4) коэффициент жесткости тела.

Рис. 4

15. По графику зависимости изменения длины резинового жгута от приложенной к нему силы найдите жесткость жгута (рис. 5).

Рис. 5

16. Постройте график зависимости силы упругости, возникающей в деформированной пружине Fупр = fl), от ее удлинения, если жесткость пружины 200 Н/м.

17. Постройте график зависимости удлинения пружины от приложенной силы Δl = f(F), если коэффициент жесткости пружины 400 Н/м.

18. Закон Гука для проекции силы упругости пружины имеет вид Fx = –200 х. Чему равна проекция силы упругости, если при удлинении пружины из недеформированного состояния проекция перемещения конца пружины на ось Х составляет 10 см?

19. Два мальчика растягивают резиновый жгут, прикрепив к его концам динамометры. Когда жгут удлинился на 2 см, динамометры показывали силы по 20 Н каждый. Что показывают динамометры при растяжении жгута на 6 см?

20. Две пружины равной длины, соединенные последовательно, растягивают за свободные концы руками. Пружина жесткостью 100 Н/м удлинилась на 5 см. Какова жесткость второй пружины, если ее удлинение равно 1 см?

21. Пружина изменила свою длину на 6 см, когда к ней подвесили груз массой 4 кг. На сколько бы она изменила свою длину под действием груза массой 6 кг?

22. На двух проволоках, одинаковой жесткости, длиной 1 и 2 м подвешены одинаковые грузы. Сравните абсолютные удлинения проволок.

23. Диаметр капроновой рыболовной лески 0,12 мм, а разрывная нагрузка 7,5 Н. Найдите предел прочности на разрыв данного сорта капрона.

24. При каком наибольшем диаметре поперечного сечения стальная проволока под действием силы в 7850 Н разорвется?

25. Люстру массой 10 кг нужно подвесить на проволоке сечением не более 5,0 мм2. Из какого материала следует взять проволоку, если необходимо обеспечить пятикратный запас прочности?

Вычисление коэффициента жесткости опытным методом

С помощью несложного опыта можно самостоятельно рассчитать, чему будет равен коэффициент Гука. Для проведения эксперимента понадобятся:

  • линейка;
  • пружина;
  • груз с известной массой.

Последовательность действий для опыта такова:

  1. Необходимо закрепить пружину вертикально, подвесив ее к любой удобной опоре. Нижний край должен остаться свободным.
  2. При помощи линейки измеряется ее длина и записывается как величина x1.
  3. На свободный конец нужно подвесить груз с известной массой m.
  4. Длина пружины измеряется в нагруженном состоянии. Обозначается величиной x2.
  5. Подсчитывается абсолютное удлинение: x = x2-x1. Для того чтобы получить результат в международной системе единиц, лучше сразу перевести его из сантиметров или миллиметров в метры.
  6. Сила, которая вызвала деформацию, — это сила тяжести тела. Формула для ее расчета — F = mg, где m — это масса используемого в эксперименте груза (переводится в кг), а g — величина свободного ускорения, равная приблизительно 9,8.
  7. После проведенных расчетов остается найти только сам коэффициент жесткости, формула которого была указана выше: k = F/x.

Формула жесткости соединений пружин

Не стоит забывать о том, что в некоторых случаях проводится соединение тела нескольким пружинами. Подобные системы получили весьма широкое распространение. Определить жесткость в этом случае намного сложнее. Среди особенностей соединения можно отметить нижеприведенные моменты:

  1. Параллельное соединение характеризуется тем, что детали размещаются последовательно. Подобный метод позволяет существенно повысить упругость создаваемой системы.
  2. Последовательный метод характеризуется тем, что деталь подключаются друг к другу. Подобный способ подсоединения существенно снижает степень упругости, однако позволяет существенно увеличить максимальное удлинение. В некоторых случаях требуется именно максимальное удлинение.

В обеих случаях применяется определенная формула, которая определяет особенности подключения. Модуль силы упругости может существенно отличаться в зависимости от особенностей конкретного изделия.

При последовательном соединении изделий показатель рассчитывается следующим образом: 1/k=1/k1+1/k2+…+1/kn. Рассматриваемый показатель считается довольно важным свойством, в данном случае он снижается. Параллельный метод подключения рассчитывается следующим образом: k=k1+k2+…kn.

Подобные формулы могут использоваться при самых различных расчетах, чаще всего на момент решения математических задач.

Уровень А

1. Какого вида деформации испытывают при нагрузке:

а) ножка скамейки;

б) сиденье скамейки;

в) натянутая струна гитары;

г) винт мясорубки;

д) сверло;

е) зубья пилы?

2. С какой деформацией (упругой или пластической) имеют дело при лепки фигур с глины, пластилина?

3. Проволока длиной 5,40 м под действием нагрузки удлинилась до 5,42 м. Определите абсолютное удлинение проволоки.

4. При абсолютном удлинении на 3 см длина пружины стала равной 27 см. Определите ее начальную длину, если пружину:

а) растянули;

б) сжали.

5. Абсолютное удлинение проволоки длиной 40 см равно 2,0 мм. Определите относительное удлинение проволоки.

6. Абсолютное и относительное удлинение стержня равны 1 мм и 0,1% соответственно. Определите длину недеформированного стержня?

7. При деформации стержня сечением 4,0 см2 сила упругости равна 20 кН. Определите механическое напряжение материала.

8. Определите модуль силы упругости в деформированном стержне площадью 4,0 см2, если при этом возникает механическое напряжение 1,5·108 Па.

9. Найдите механическое напряжение, возникающее в стальном тросе при его относительном удлинении 0,001.

10. При растяжении алюминиевой проволоки в ней возникло механическое напряжение 35 МПа. Найдите относительное удлинение.

11. Чему равен коэффициент жесткость пружины, которая удлиняется на 10 см при силе упругости 5,0 H?

12. На сколько удлинилась пружина жесткостью 100 Н/м, если сила упругости при этом равна 20 Н?

13. Определите максимальную силу, которую может выдержать стальная проволока, площадь поперечного сечения которой 5,0 мм2.

14. Берцовая кость человека выдерживает силу сжатия 50 кН. Считая предел прочности кости человека равным 170 МПа, оцените среднюю площадь поперечного сечения берцовой кости.

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости.

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С, лежащий на ней, действует сила упругости Fупр (рис. 7).

Рис. 7

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей.
В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса. На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N1, N2, N3, N4 и N5) и сил натяжения подвесов (силы T1, T2, T3 и T4).

Рис. 8

Единицы измерения

При проводимых расчетах также должно учитываться то, в каких единицах измерениях проводятся вычисления

При рассмотрении того, чему равно удлинение пружины уделяется внимание единице измерения в Ньютонах

Для того чтобы упростить выбор детали многие производители указывают его цветовым обозначением.

Среди особенностей подобной маркировки отметим следующее:

  1. Класс А обозначается белым, желтым, оранжевым и коричневым оттенками.
  2. Класса В представлен синим, голубым, черным и желтым цветом.

Как правило, подобное свойство отмечается на внешней стороне витка. Производители наносят небольшую полоску, которая и существенно упрощает процесс выбора.

Сила упругости: закон Гука

Теория > Физика 7 класс > Взаимодействие тел

Мы с вами знаем, что если на тело действует какая-то сила, то тело будет двигаться под воздействием этой силы. Например, листочек падает на землю, потому что его притягивает Земля. Но если листочек упал на лавочку, он не продолжает падать, и не проваливается сквозь лавочку, а находится в покое.И если листочек перестает вдруг двигаться, значит, должна была появиться сила, которая противодействует его движению. Эта сила действует в сторону, противоположную притяжению Земли, и равна ей по величине. В физике эта сила, противодействующая силе тяжести, называется силой упругости.

Что такое сила упругости?

Щенок Антошка очень любит наблюдать за птичками.
Для примера, поясняющего, что такое сила упругости, вспомним и мы птичек и веревку. Когда птичка садится на веревку,то опора, до этого натянутая горизонтально, прогибается под весом птички и слегка растягивается. Птичка сначала движется к земле вместе с веревкой, потом останавливается. И так происходит при добавлении на веревку еще одной птички. А потом еще одной. То есть, очевидно, что с увеличением силы воздействия на веревку она деформируется вплоть до того момента, пока силы противодействия этой деформации не станут равны весу всех птичек. И тогда движение вниз прекращается. 
При растяжении подвеса сила упругости будет равна силе тяжести, то растяжение прекращается.
Говоря по-простому, работа силы упругости заключается в том, чтобы сохранять целостность предметов, на которые мы воздействуем другими предметами. И если сила упругости не справляется, то тело деформируется безвозвратно. Веревка рвется под обилием снега, ручки у пакета рвутся,если его перегрузить продуктами, при больших урожаев ломаются ветви яблони и так далее.
Когда возникает сила упругости? В момент начала воздействия на тело. Когда птичка села на веревку. И исчезает, когда птичка взлетает. То есть, когда воздействие прекращается. Точкой приложения силы упругости является та точка, в которой происходит воздействие.

Сила упругости возникает только при деформации тел. Если исчезает деформация тела, то исчезает и сила упругости.

Деформации бывают разных видов: растяжения, сжатия, сдвига, изгиба и кручения.

 
Растяжение – мы взвешиваем на пружинных весах тело, или обычные резинка, которая растягивается под весом тела

Сжатие — мы положили на пружину тяжелый предмет 

Сдвиг — работа ножниц или пилы, расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки – сидение.

Изгиб —  наши птички сели на ветку, турник с учениками  на уроке физкультуре 

Кручение — на кручение работают валы машин, шнеки буровых установок и ключи в замочной скважине

Как найти силу упругости: закон Гука

Силу упругости обозначают буквой F с индексом Fупр.

Чтобы узнать, как найти силу упругости, мы должны познакомиться с законом Гука. Английский физик Роберт Гук впервые установил зависимость величины силы упругости от деформации тела. Эта зависимость прямо пропорциональная.
Чем больше возникает деформация, тем больше сила упругости. 
То есть формула для силы упругости выглядит следующим образом:
Fупр=k*∆l,

где ∆l – величина деформации,
а k – коэффициент жесткости.Коэффициент жесткости , естественно, различен для разных тел и веществ. Коэффициент силы  упругости измеряется в Н/м (ньютонах на метр).

Теория | Калькуляторы | ГДЗ | Таблицы и знаки | Переменка | Главная Карта Сайта

Определение и формула жесткости пружины

При рассмотрении того, что такое коэффициент жесткости пружины следует уделить внимание понятию упругости. Для ее обозначения применяется символ F

При этом сила упругости пружины характеризуется следующими особенностями:

  1. Проявляется исключительно при деформации тела и исчезает в случае, если деформация пропадает.
  2. При рассмотрении, что такое жесткость пружины следует учитывать, после снятия внешней нагрузки тело может восстанавливать свои размеры и форму, частично или полностью. В подобном случае деформация считается упругой.

Не стоит забывать о том, что жесткость – характеристика, свойственная упругим телам, способным деформироваться. Довольно распространенным вопросом можно назвать то, как обозначается жесткость пружины на чертежах или в технической документации. Чаще всего для этого применяется буква k.

Слишком сильная деформация тела становится причиной появления различных дефектов. Ключевыми особенностями можно назвать следующее:

  1. Деталь может сохранять свои геометрические параметры при длительной эксплуатации.
  2. При увеличении показателя существенно снижается сжатие пружины под воздействие одинаковой силы.
  3. Наиболее важным параметром можно назвать коэффициент жесткости. Он зависит от геометрических показателей изделия, типа применяемого материала при изготовлении.

Довольно большое распространение получили красные пружины и другого типа. Цветовое обозначение применяется в случае производства автомобильных изделий. Для расчета применяется следующая формула: k=Gd4/8D3n. В этой формуле указываются нижеприведенные обозначения:

  1. G – применяется для определения модуля сдвига. Стоит учитывать, что это свойство во многом зависит от применяемого материала при изготовлении витков.
  2. d – диаметральный показатель проволоки. Она производится путем проката. Этот параметр указывается также в технической документации.
  3. D – диаметр создаваемых витков при накручивании проволоки вокруг оси. Он подбирается в зависимости от поставленных задач. Во многом диаметр определяет то, какая нагрузка оказывается для сжатия устройства.
  4. n – число витков. Этот показатель может варьировать в достаточно большом диапазоне, также влияет на основные эксплуатационные характеристики изделия.

Рассматриваемая формула применяется в случае расчета коэффициента жесткости для цилиндрических пружин, которые устанавливаются в самых различных механизмах. Подобная единица измеряется в Ньютонах. Коэффициент жесткости для стандартизированных изделий можно встретить в технической литературе.

Ссылка на основную публикацию