Законы дальтона

Учебник по физике10 класс

§ 3.8. Законы Авогадро и Дальтона

Следует сказать еще о двух газовых законах. Один из них касается числа молекул различных газов при одинаковых давлениях и температурах, а другой относится к смеси газов.

Закон Авогадро

В начале XIX в. было установлено правило кратных отношений для газов, вступающих в химическую реакцию. Если температуры и давления газов, соединяющихся друг с другом, равны, то их объемы находятся в простых отношениях: 1:1, 1 : 2, 1 : 3 и т. д.

На основании этого правила Авогадро в 1811 г. высказал смелую для того времени гипотезу: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул. При отношении 1 : 1 молекулы реагирующих газов соединяются попарно. Если отношение объемов равно 1 : 2, то каждая молекула первого газа присоединяет к себе две молекулы второго и т. д.

В настоящее время гипотеза Авогадро строго доказана и носит название закона Авогадро.

Согласно закону Авогадро различные газы, взятые в количестве 1 моль, имеют одинаковые объемы при одинаковых давлениях р и температурах t, так как число молекул в них одно и то же. При нормальных условиях, т. е. при температуре 0 °С и атмосферном давлении 101 325 Па, этот объем, как показывают измерения, равен

Объем VMO называют молярным при нормальных условиях.

Почему же в равных объемах газов при одинаковых давлениях и температурах всегда обнаруживается одно и то же число молекул независимо от того, какой газ взят? Объяснить это можно только с помощью молекулярно-кинетической энергии (см. § 4.5).

Закон Дальтона

Чаще имеют дело не с чистым газом — кислородом, водородом и т. д., а со смесью газов. Атмосферный воздух, в частности, представляет собой смесь азота, кислорода и многих других газов. Каждый из газов смеси вносит свой «вклад» в суммарное давление на стенки сосуда. Давление, которое имел бы каждый из газов, составляющих смесь, если удалить из сосуда остальные газы, называют парциальным (т.е. частным) давлением.

Простейшее предположение, которое можно сделать, состоит в том, что давление смеси газов р равно сумме парциальных давлений всех газов p1, p2, р3 . . .:

Английский химик Д. Дальтон установил, что для достаточно разреженных газов именно так и есть в действительности. Соотношение (3.8.2) называют законом Дальтона.

С точки зрения молекулярно-кинетической теории закон Дальтона выполняется потому, что взаимодействие между молекулами идеального газа пренебрежимо мало. Поэтому каждый газ оказывает на стенку сосуда такое давление, как если бы остальных газов не было.

Моль любого газа при нормальных условиях занимает объем 22,4 л. Это значение объема установлено экспериментально. В смеси газов каждый из них оказывает давление на стенки сосуда независимо от присутствия других газов.

Закон Дальтона

Один из наиболее уважаемых и знаменитых естествоиспытателей, Джон Дальтон, первым предположил, что сумма давлений отдельных веществ в газовой смеси равна ее общему давлению. Закон Дальтона математически записывается как:

Pc = P1 + P2 + … + Pn,

где Pc — давление смеси.

Закон Дальтона напрямую связан с уравнением идеального газа:

PV = nRT,

где n — количество вещества, а R — универсальная газовая постоянная.

Из уравнения идеального газа мы можем выразить давление P = nRT / V и представить давление газовой смеси как сумму парциальных давлений:

Pc = n1RT1 / V1 + n2RT1 / V1 + … + n3RT1 / V1

В этом выражении прежде всего требуется выяснить количество вещества определенного газа n. Обычно оно выражается в молях, следовательно, его можно вычислить через массу газа или его объем. Например, у нас есть 10 литров кислорода. Через плотность мы можем выразить его массу по формуле:

m = pV

Плотность кислорода — справочная величина, которая равна 1,41 кг/м3. Переведем литры в кубические метры и подсчитаем массу:

m = 1,41 × 0,01 = 0,0141 кг = 14,1 г

Зная, что 1 моль кислорода имеет массу в 15,9 г, легко подсчитать, что количество вещества в 10 литрах газа составляет n = 0,88 моль.

Остальные величины обычно известны. Следует упомянуть, что значение универсальной газовой постоянной отличается:

  • если расчеты производятся в литрах и атмосферах, то R = 0,08206 л × атм / моль × К;
  • если расчеты производятся по системе СИ в кубических метрах и паскалях, то R = 8,3143 Дж / К × моль.

Закон о парциальном давлении газовой смеси строго соблюдается при крайне малых давлениях, когда среднее расстояние между структурными единицами веществ значительно больше их собственных размеров, а молекулярное взаимодействие почти не наблюдается. При средних давлениях закон соблюдается приблизительно, но при высоких давлениях наблюдается большое отклонение от парциального закона Дальтона.

Наша программа позволяет вычислить общее давление газовой смеси, если известно количества вещества ее компонентов. Для расчетов также требуется знать температуру смеси в кельвинах и ее объем в литрах. После заполнения всех ячеек калькулятор автоматически выдаст общее давление смеси.

Свойства идеального газа

При рассмотрении газовых смесей каждый ее компонент рассматривается как идеальный газ. Идеальный газ не существует в природе, так как представляет собой математическую модель с несколькими допущениями:

  • размер молекул пренебрежимо мал;
  • молекулярное взаимодействие отсутствует;
  • атомы соударяются абсолютно упруго (по типу бильярдных шаров);
  • газ находится в термодинамическом равновесии.

Идеальный газ обладает несколькими особыми свойствами, которые описываются газовыми законами. Так, при постоянном давлении отношение объема газа к его температуре остается статичным: при изменении одной величины, вторая также прямо пропорционально изменяется. То же самое и с изохорными процессами, то есть протекающими при постоянном объеме: изменение давления газа вызывает прямо пропорциональное изменение температуры и наоборот. При постоянной температуре или изотермическом процессе, давление и объем ведут себя иначе: при изменении одной величины, вторая изменяется обратно пропорционально.

В газовых законах давление может измеряться в паскалях или в атмосферах, объем — в литрах или кубометрах, а температура — исключительно в кельвинах. Именно поэтому при выполнении расчетов можно использовать разные формулы, но в любом случае требуется переводить градусы Цельсия в кельвины по простой формуле:

T = 273 + tc,

где tc — положительная или отрицательная температура, выраженная в градусах Цельсия.

Формулировка закона Дальтона

В первые годы XIX века, занимаясь изучением поведения различных газовых смесей, британский ученый Джон Дальтон установил следующий факт: если суммировать все парциальные давления компонентов газовой смеси, то получится общее давление, которое можно измерить барометром, манометром или другим предназначенным для этого прибором. Это и есть закон Дальтона. Запишем его в виде математического равенства:

Понять, почему это равенство справедливо, можно, если вспомнить, что компоненты смеси создают давление независимо друг от друга.

Учитывая, что парциальное давление Pi прямо пропорционально количеству вещества ni компонента i, что справедливо всегда, когда T=const и V = const, тогда приходим к еще одному равенству:

Величина xi называется мольной долей. С атомными процентами ai компонента она связана простым соотношением:

Выражение, которое позволяет определить мольную долю компонента через его парциальное давление и наоборот, также называется законом Дальтона.

Следует не забывать, что рассмотренный закон справедлив не только в случае идеальных газов, но и в случае отсутствия химических реакций в них. Последние приводят к изменениям компонентного и мольного состава, что нарушает закон для давления газовой смеси.

Примеры решения задач

В этом пункте рассмотрим примеры применения закона Дальтона для решения практических задач.

Задача 1. Необходимо определить парциальное давление трех основных компонентов в сухом воздухе.

Из литературных данных можно узнать, что поскольку воздух является сухим, то основными его компонентами будут азот (около 78 %), кислород (около 21 %) и благородный газ аргон (около 1 %). Учитывая, что общее давление воздуха на уровне моря равно 1 атмосфере, и переводя атомные проценты в мольные доли, получим значения парциальных давлений для каждого компонента:

Задача 2. Есть два баллона с чистыми газами. Первый баллон содержит азот с температурой 300 К, объемом в 10 литров и давлением в 2 атмосферы. Второй баллон содержит кислород с температурой 300 К, но имеющий объем 15 литров и давление 1,5 атмосферы. Оба баллона соединили друг с другом. Необходимо рассчитать парциальное давление каждого компонента в полученной смеси.

Решать эту задачу начнем с вычисления количества вещества для азота и кислорода. Используя уравнение для идеального газа, получим:

Когда два баллона соединят, произойдет перемешивание газов так, что каждый компонент займет весь объем двух баллонов. Общее давление, которое будет в системе, можно рассчитать, пользуясь также уравнением состояния идеального газа:

Теперь можно применить формулы закона Дальтона, чтобы рассчитать парциальные давления кислорода и азота:

Отношение полученных парциальных давлений газов равно отношению количеств вещества для них.

Ссылка на основную публикацию