Уравнение движения математического маятника

2.3. Свободные колебания. Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести Fτ = –mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Рисунок 2.3.1.Математический маятник. φ – угловое отклонение маятника от положения равновесия, x = lφ – смещение маятника по дуге

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l, то его угловое смещение будет равно φ = x / l. Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x, а

Только в случае малых колебаний, когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15–20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Таким образом, тангенциальное ускорение aτ маятника пропорционально его смещению x, взятому с обратным знаком. Это как раз то условие, при котором система является гармоническим осциллятором. По общему правилу для всех систем, способных совершать свободные гармонические колебания, модуль коэффициента пропорциональности между ускорением и смещением из положения равновесия равен квадрату круговой частоты:

Эта формула выражает собственную частоту малых колебаний математического маятника.

Следовательно,

Модель.
Математический маятник

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

Здесь d – расстояние между осью вращения и центром масс C.

Рисунок 2.3.2.Физический маятник

Знак «минус» в этой формуле, как обычно, означает, что момент сил стремится повернуть маятник в направлении, противоположном его отклонению из положения равновесия. Как и в случае математического маятника, возвращающий момент M пропорционален sin φ. Это означает, что только при малых углах φ, когда sin φ ≈ φ, физический маятник способен совершать свободные гармонические колебания. В случае малых колебаний

см. §1.23

εIO

Здесь ω – собственная частота малых колебаний физического маятника.

Следовательно,

Более строгий вывод формул для ω и T можно сделать, если принять во внимание математическую связь между угловым ускорением и угловым смещением: угловое ускорение ε есть вторая производная углового смещения φ по времени:

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Это уравнение свободных гармонических колебаний (). Коэффициент в этом уравнении имеет смысл квадрата круговой частоты свободных гармонических колебаний физического маятника.

По теореме о параллельном переносе оси вращения (теорема Штейнера) момент инерции I можно выразить через момент инерции IC относительно оси, проходящей через центр масс C маятника и параллельной оси вращения:

Окончательно для круговой частоты ω свободных колебаний физического маятника получается выражение:

Цель работы и оборудование

Цель работы: научиться измерять ускорение свободного падения с помощью математического маятника.

Приборы и материалы: математический маятник, электронный секундомер, линейка, микрокалькулятор.

Главную роль в данной работе играет математический маятник. Это небольшое тело, закрепленное на длинной нити. Чтобы компенсировать небольшую длину, мы будем запускать маятник на небольшую амплитуду от положения равновесия – говорят: на небольшой угол колебаний.

Период колебаний – наименьший промежуток времени, за который тело возвращается в то же состояние, в котором оно находилось в первоначальный момент (рис. 2). Состояние маятника в некоторый момент – это положение груза и его скорость (модуль и направление).

Рис. 2. Колебание маятника

Будем считать период колебаний всегда, когда тело будет занимать крайнее правое положение. Чтобы определить время колебаний, будем использовать электронный секундомер.

Цель работы. Оборудование

Цель: выяснить, как зависит период и частота свободных колебаний математического маятника от его длины.

Оборудование: штатив с муфтой и лапкой, шарик с нитью, секундомер (рис. 1).

Рис. 1. Оборудование

Для выполнения работы нам потребуется таблица. Таблица будет состоять из следующих частей:

Величина/№

1

2

3

4

5

Длина (см)

5

20

45

80

125

Число колебаний

30

30

30

30

30

Время (с)

   

Период (с)

   

Частота (Гц)

   

Во-первых, нужно определить количество экспериментов. В данном случае их 5. По вертикали записаны те самые величины, которые мы будем измерять. В первую очередь, длина самого маятника в сантиметрах. Следующая величина – количество колебаний. Далее – полное время колебаний. Следующие две графы – это период колебаний, который измеряется в секундах, и частота в Гц

Обратите внимание, что мы заранее записали те величины, которые будем использовать. В первую очередь, это длина нитяного маятника

Начальная длина: 5 см – это очень короткий маятник. Дальше 20, 45, 80 и 125. Число колебаний мы будем использовать постоянное. Это 30 колебаний. В каждом эксперименте мы будем использовать по 30 колебаний.

Решения уравнения движения

Гармонические колебания

Малые колебания маятника являются гармоническими. Это означает, что смещение маятника от положения равновесия изменяется во времени по синусоидальному закону. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимые константы:

x=Asin⁡(θ+ωt),{\displaystyle x=A\sin(\theta _{0}+\omega t),}

где A{\displaystyle A} — амплитуда колебаний маятника, θ{\displaystyle \theta _{0}} — начальная фаза колебаний, ω{\displaystyle \omega } — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями.

Нелинейный маятник

Для маятника, совершающего колебания с большой амплитудой, закон движения более сложен:

sin⁡x2=ϰ⋅sn⁡(ωt;ϰ),{\displaystyle \sin {\frac {x}{2}}=\varkappa \cdot \operatorname {sn} (\omega t;\varkappa ),}

где sn{\displaystyle \operatorname {sn} } — это синус Якоби. Для ϰ1{\displaystyle \varkappa
он является периодической функцией, при малых ϰ{\displaystyle \varkappa } совпадает с обычным тригонометрическим синусом.

Параметр ϰ{\displaystyle \varkappa } определяется выражением

ϰ=ε+ω22ω2,{\displaystyle \varkappa ={\frac {\varepsilon +\omega ^{2}}{2\omega ^{2}}},}

где ε=EmL2{\displaystyle \varepsilon ={\frac {E}{mL^{2}}}} — энергия маятника в единицах t−2.

Период колебаний нелинейного маятника составляет

T=2πΩ,Ω=π2ωK(ϰ),{\displaystyle T={\frac {2\pi }{\Omega }},\quad \Omega ={\frac {\pi }{2}}{\frac {\omega }{K(\varkappa )}},}

где K — эллиптический интеграл первого рода.

Для вычислений практически удобно разлагать эллиптический интеграл в ряд:

T=T{1+(12)2sin2⁡(α2)+(1⋅32⋅4)2sin4⁡(α2)+⋯+(2n−1)!!(2n)!!2sin2n⁡(α2)+…}{\displaystyle T=T_{0}\left\{1+\left({\frac {1}{2}}\right)^{2}\sin ^{2}\left({\frac {\alpha }{2}}\right)+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}\sin ^{4}\left({\frac {\alpha }{2}}\right)+\dots +\left^{2}\sin ^{2n}\left({\frac {\alpha }{2}}\right)+\dots \right\}},

где T=2πLg{\displaystyle T_{0}=2\pi {\sqrt {\frac {L}{g}}}} — период малых колебаний, α{\displaystyle \alpha } — максимальный угол отклонения маятника от вертикали.

При углах до 1 радиана (≈60°) с приемлемой точностью (ошибка менее 1 %) можно ограничиться первым приближением:

T=T(1+14sin2⁡(α2)).{\displaystyle T=T_{0}\left(1+{\frac {1}{4}}\sin ^{2}\left({\frac {\alpha }{2}}\right)\right).}

Точная формула периода, с квадратичной сходимостью для любого угла максимального отклонения, обсуждается на страницах сентябрьского выпуска журнала «Заметки американского математического общества» 2012 года:

T=2πM(cos⁡(θ2))Lg,{\displaystyle T={\frac {2\pi }{M{\big (}\cos(\theta _{0}/2){\big )}}}{\sqrt {\frac {L}{g}}},}

где M(x){\displaystyle M(x)} — арифметико-геометрическое среднее чисел 1 и x{\displaystyle x}.

Движение по сепаратрисе

Движение маятника по сепаратрисе является непериодическим. В бесконечно далёкий момент времени он начинает падать из крайнего верхнего положения в какую-то сторону с нулевой скоростью, постепенно набирает её, а затем останавливается, возвратившись в исходное положение.

Выводы

Можно сделать вывод: с увеличением длины маятника увеличивается период колебаний и уменьшается частота (рис. 4). Хотелось бы, чтобы четвертый и пятый опыты вы проделали сами и убедились, что все действительно так, как мы получили в наших опытах.

Формула для вычисления периода колебания математического маятника: , где  – длина маятника, а – ускорение свободного падения.

Формула для вычисления частоты колебаний: .

Рис. 4. Зависимость частоты и периода маятника от его длины

На этом лабораторная работа заканчивается, но есть дополнительная часть к лабораторной работе – дальнейшее исследование колебаний.

Ветка.

Дополнительная часть лабораторной работы заключается в том, чтобы лучше определить взаимосвязь периода колебаний и длины нитяного маятника. Эта зависимость должна определяться математически. Цель дополнительного задания в том, чтобы выявить математическую зависимость между периодом и длиной маятника. Как это можно сделать? Нужно рассмотреть отношение периодов колебаний маятника и отношение длин маятника. Посмотрим на таблицу, которую используем, и обсудим те величины, которые будем туда заносить.

В первой части мы рассмотрим отношение периода из второго опыта, когда длина маятника составляла 20 см. Отношение мы будем искать к периоду, который получили, когда длина маятника составляла 5 см. Отношение самих длин мы рассмотрим в нижней строке. Итак, в верхней строке отношение периодов , в нижней строке отношение длин маятника . Все необходимые данные мы возьмем из предыдущей таблицы

Обратим внимание, что эти вычисления в некоторых случаях получатся приближенными, но это зависит уже от чистоты эксперимента. Если мы обратимся к первой строке, то увидим, что во всех экспериментах отношение периодов будет составлять:

Далее рассмотрим отношение длин маятников

Обратите внимание: в первом случае это отношение равно 4, т. е

. Во втором случае – 9. В третьем случае – 16. Видно сразу, как будут связаны эти величины. Посмотрите: в первом случае у нас 2 и 4. В другом случае – 3 и 9 и т. д.

Делаем вывод о том, что период будет пропорционален корню квадратному из длины маятника. Эту зависимость мы можем использовать в дальнейшем для анализа подобных колебаний: 

Из этого следует, что период мы можем записать как  .

Другими словами, если мы увеличиваем длину маятника в 4 раза, то период увеличится в 2 раза. Если увеличим длину маятника в 3 раза, то увеличится период в  раз. И т. д. В этом и заключается результат лабораторной работы.

Список литературы

  1. Аксенович Л.А. Физика в средней школе: Теория. Задания. Тесты: учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования/Л.А. Аксенович, Н.Н. Ракина, К.С. Фарино. Под ред. К.С. Фарино. – Минск.: Адукацыя i выхаванне, 2004.
  2. Физика: механика. 10 кл.: учеб. для углубленного изучения физики/М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др. Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  3. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. – М., 1974.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «eduspb.com» (Источник)
  2. Интернет-портал «physics.ru» (Источник)
  3. Интернет-портал «fizmat.by» (Источник)

Домашнее задание

  1. Что такое математический маятник? Запишите формулу для периода такого маятника.
  2. Один математический маятник имеет период 10 с, а другой – период 6 с. Определите период колебаний третьего математического маятника, длина которого равна разности длин указанных маятников.
  3. Длина математического маятника 25 см. Определите период и частоту его колебаний на Земле.
Ссылка на основную публикацию