Физика ядра и частиц, xx век

Цепная ядерная реакция

Любой из нейтронов, вылетающий из ядра, может попасть в соседнее ядро и вызвать излучение им новых нейтронов, которые, в свою очередь, попадут в новые ядра, и те излучат новые нейтроны. В результате получается процесс, который поддерживает сам себя. Такой процесс называется цепной ядерной реакцией.

Цепная ядерная реакция – самоподдерживающаяся реакция деления тяжелых ядер, в которой непрерывно воспроизводятся нейтроны, делящие все новые и новые ядра.

Суть такой реакции заключается в том, что на первом этапе распада выделяется, допустим, N нейтронов, на следующем этапе –  нейтронов, и т. д. (см. Рис. 3). Количество нейтронов в реакции растёт в геометрической прогрессии. Это приводит к тому, что колоссально растёт выделяемая энергия, которая позволяет реакции поддерживать саму себя.

Возможны различные варианты протекания цепных ядерных реакций, эти процессы позволяет описывать физическая величина, которая называется критическая масса.

Критическая масса () – минимальное количество делящегося вещества, необходимое для начала самоподдерживающейся цепной ядерной реакции. Критическая масса известна для различных радиоактивных элементов (для урана-235 она составляет 48 кг).

Рис. 3. Рост числа нейтронов при цепной реакции

В зависимости от массы рассматриваемого образца цепные ядерные реакции делят на следующие формы протекания:

1. Если масса образца меньше критической массы (), то число нейтронов убывает и реакция затухает.

2. Если масса образца больше критической массы (), то число нейтронов лавинообразно увеличивается, реакция становится неуправляемой, что приводит к взрыву.

3. Если масса образца соответствует критической, протекает управляемая цепная реакция.

Список литературы

  1. Пёрышкин А.В., Гутник Е.М. Физика 9 класс. Учебник для общеобразовательных учреждений. – М.: Дрофа.
  2. Китайгородский А.И. Физика для всех. Фотоны и ядра. Книга 4. – М.: Наука.
  3. В.Е. Левин. Ядерная физика. – М.: Атомиздат, 1975.
  4. Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика. 11 класс: учебник для углублённого изучения физики. – М.: Дрофа.
  5. Резерфорд Э. Избранные научные труды. Строение атома и искусственное

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Class-fizika.narod.ru (Источник).
  2. Clck.ru (Источник).
  3. Clck.ru (Источник).

Домашнее задание

  1. Что такое критическая масса?
  2. Расскажите, каким образом происходит деление ядра урана.
  3. Что такое цепная ядерная реакция?
  4. Вопросы в конце параграфа 74, стр. 249 (Пёрышкин А.В., Гутник Е.М. Физика 9-ый класс Источник)

Вариант 4

1. В конце XIX — начале ХХ века было открыто явление радиоактивного распада, в ходе которого из ядра вылетают α-частицы. Эти экспериментальные факты позволяют выдвинуть гипотезу о

А: сложном строении атома
Б: возможности превращения одних элементов в другие

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Планетарная модель атома основана на опытах по

1) растворению и плавлению твёрдых тел
2) ионизации газа
3) химическому получению новых веществ
4) рассеянию α-частиц

3. Какая из строчек таблицы правильно отражает структуру ядра 2713Al?

р — число протонов n — число нейтронов
1) 13 14
2) 13 27
3) 27 13
4) 27 40

4. Суммарный заряд электронов в нейтральном атоме:

1) отрицательный и равен по модулю заряду ядра
2) положительный и равен по модулю заряду ядра
3) может быть положительным или отрицательным, но равным по модулю заряду ядра
4) отрицательный и всегда больше по модулю заряда ядра

5. Ядро изотопа золота 20479Au претерпевает β-распад. В результате получается изотоп

1) 20077Ir
2) 20478Pt
3) 20480Hg
4) 20881Tl

6. В результате бомбардировки изотопа лития 78Li ядрами дейтерия образуется изотоп бериллия:

73Li + 21H → 84Be + …

Какая при этом испускается частица?

1) α-частица 42He
2) нейтрон 1n
3) протон 11H
4) электрон -1е

7. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

А) Энергия связи ядра
Б) Число нейтронов
В) Дефект массы

ФОРМУЛЫ

1) Δmc2
2) (Zmp + Nmn) − Mя
3) mc2
4) Z + N
5) A − Z

8. Определите энергию связи ядра углерода 126C. Масса протона приблизительно равна 1,0073 а.е.м., нейтрона 1,0087 а.е.м., ядра углерода 12,0000 а.е.м., 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.

9. Записана ядерная реакция, в скобках указаны атомные массы (в а.е.м.) участвующих в ней частиц.

21H(2,0141) + 31H(3,0161) → 42He(4,0026) + 1n(1,0087)

Какая энергия выделяется в этой реакции? Учтите, что 1 а.е.м. = 1,66 · 10-27 кг, а скорость света с = 3 · 108 м/с.

Ответы на контрольную работу по физике Строение атома и атомного ядра. Использование энергии атомных ядер для 9 классаВариант 1
1-4
2-4
3-3
4-3
5-2
6-1
7. А3 Б4 В1
8. 2,8 · 10-13 Дж
9. 2,8 · 10-12 ДжВариант 2
1-4
2-3
3-4
4-2
5-2
6-1
7. А3 Б2 В4
8. 4,4 · 10-12 Дж
9. 2,4 · 10-12 ДжВариант 3
1-1
2-3
3-2
4-1
5-1
6-1
7. А4 Б1 В5
8. 4,9 · 10-12 Дж
9. 3,3 · 10-11 ДжВариант 4
1-3
2-4
3-1
4-1
5-3
6-2
7. А1 Б5 В2
8. 1,4 · 10-11 Дж
9. 2,8 · 10-12 Дж

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в p–V координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S:

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Формула для кинетической энергии:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Механизм превращения энергии во время деления ядра. Единица измерения энергии

Поскольку масса покоя тяжёлого ядра урана больше суммы масс покоя осколков, образующихся в результате распада, то реакция деления протекает с выделением энергии. Вычислить эту энергию можно по аналогии с энергией связи.

, где

 

Кулоновские силы, разгоняя осколки ядра, придают им определённую кинетическую энергию. Однако эти осколки тормозятся окружающей средой, преобразуя свою кинетическую энергию во внутреннюю энергию окружающей среды. Таким образом, вследствие деления ядер урана наблюдается колоссальный нагрев всего окружающего пространства. Для примера, при полном делении всех ядер одного грамма урана выделится энергия эквивалентная сгоранию 2,5 т нефти.

Использовать стандартную единицу измерения энергии (Дж) для ядер не совсем удобно, так как энергия одного ядра крайне мала. Для микромира была введена специальная единица измерения – электронвольт.

Один электронвольт равен работе, которую должно совершить поле при перемещении элементарного заряда между разностью потенциалов 1 В.

Деление ядер урана

В 1938 году немецкими учёными Отто Ганом и Фрицом Штрассманом (см. Рис. 1) было открыто явление деления ядер урана под воздействием медленных нейтронов. Использование именно нейтронов в данном эксперименте обусловлено их электронейтральностью. Отсутствие кулоновского отталкивания от протонов в ядре позволяло нейтронам легко в него проникать.

Нейтрон:

Рис. 1. Немецкие учёные

При попадании нейтрона в ядро урана-235 оно деформируется и принимает вытянутую форму. Так как ядерные силы действуют на крайне малых расстояниях, то они не могут противодействовать электростатическому отталкиванию противоположных частей вытянутого ядра, и оно разрывается на части. При этом излучается 2–3 нейтрона, а осколки, не сильно отличающиеся по массе, разлетаются с огромной скоростью (см. Рис. 2).

Рис. 2. Деление ядра урана-235

Существует несколько возможных результатов деления ядра урана-235:

1. Распад на барий и криптон с выделением трёх нейтронов:

2. Распад на ксенон и стронций с выделением двух нейтронов:

Делением ядра называется ядерная реакция деления тяжёлого ядра, возбуждённого захватом нейтрона, на две приблизительно равные части, называемые осколками деления.

Ядра урана-238 могут делиться лишь под влиянием нейтронов большой энергии (быстрых нейтронов). Такую энергию имеют только 60 % нейтронов, появляющихся при делении ядра урана-238. Примерно только 1 из 5 образовавшихся нейтронов вызывает деление ядра.

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.

Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10-13см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов – «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида АХ).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96Sr, 96Y, 96Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234U, 235U, 236U, 238U.

Изотопы – нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36S, 37Cl, 38Ar, 39K, 40Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде ZХМ, где X – символ химического элемента; М – массовое число, равное сумме числа протонов и нейтронов в ядре; Z – атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3Н, 14С, 137Сs, 90Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 – 15Р32, такое же массовое число имеет и один из изотопов серы – 16S32.

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Глава 8. Световые волны

  • Оптика
  • § 59. Скорость света
  • § 60. Принцип Гюйгенса. Закон отражения света
  • § 61. Закон преломления света
  • § 62. Полное отражение
  • Примеры решения задач
  • Упражнение 8
  • § 63. Линза
  • § 64. Построение изображения в линзе
  • § 65. Формула тонкой линзы. Увеличение линзы
  • Примеры решения задач
  • Упражнение 9
  • § 66. Дисперсия света
  • § 67. Интерференция механических волн
  • § 68. Интерференция света
  • § 69. Некоторые применения интерференции
  • § 70. Дифракция механических волн
  • § 71. Дифракция света
  • § 72. Дифракционная решетка
  • § 73. Поперечность световых волн. Поляризация света
  • § 74. Поперечность световых волн и электромагнитная теория света
  • Примеры решения задач
  • Упражнение 10
  • Краткие итоги главы 8

Комптоновская длина волны — параметр элементарной частицы: величина размерности длины, характерная для релятивистских квантовых процессов, идущих с участием этой частицы

Формула комптоновской длины волны получается из формулы Де-Бройлевской длины волны путём замены скорости частицы v на скорость света c.

Де-Бройлевской длины волны :   

Название Комптоновская длина волны связано с тем, что величина определяет изменение длины волны электромагнитного излучения при комптоновском рассеянии.

Для электрона :   

Для протона :   

Чаще всего используется приведенная Комптоновская длина волны :

Для электрона :   

Для протона : 

В Формуле мы использовали :

 — Комптоновская длина волны

 — Приведенная Комптоновская длина волны

 — Скорость света

 — Постоянная Планка

 — Масса электрона

 — Постоянная Дирака.

Масса протона — элементарная частица. Относится к барионам, имеет спин 1/2, электрический заряд +1 (в единицах элементарного электрического заряда)

Скорость радиоактивного распада — число распадов в единицу времени

В общем виде скорость радиоактивного распада записывается, как :

Для того, чтоб нам стало более понятно, продифференцируем выражение для зависимости числа атомов от времени и получим:

И тогда у нас получается, что скорость радиоактивного распада

Таким образом, зависимость от времени числа не распавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной 

Таблица некоторых значений постоянных распада:

В Формуле мы использовали :

 — Скорость распада

 — Период полураспада

 — Время распада

 — Начальное число радиоактивных ядре при t=0

 — Постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени

 — Скорость распада в начальный момент времени t = 0.

Магнетизм

Сила Ампера, действующая на проводник с током помещённый в однородное магнитное поле, рассчитывается по формуле:

Момент сил действующих на рамку с током:

Сила Лоренца, действующая на заряженную частицу движущуюся в однородном магнитном поле, рассчитывается по формуле:

Радиус траектории полета заряженной частицы в магнитном поле:

Модуль индукции B магнитного поля прямолинейного проводника с током I на расстоянии R от него выражается соотношением:

Индукция поля в центре витка с током радиусом R:

Внутри соленоида длиной l и с количеством витков N создается однородное магнитное поле с индукцией:

Магнитная проницаемость вещества выражается следующим образом:

Магнитным потоком Φ через площадь S контура называют величину заданную формулой:

ЭДС индукции рассчитывается по формуле:

При движении проводника длиной l в магнитном поле B со скоростью v также возникает ЭДС индукции (проводник движется в направлении перпендикулярном самому себе):

Максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S, вращающемся с угловой скоростью ω в магнитном поле с индукцией В:

Индуктивность катушки:

Где: n — концентрация витков на единицу длины катушки:

Связь индуктивности катушки, силы тока протекающего через неё и собственного магнитного потока пронизывающего её, задаётся формулой:

ЭДС самоиндукции возникающая в катушке:

Энергия катушки (вообще говоря, это энергия магнитного поля внутри катушки):

Объемная плотность энергии магнитного поля:

Корпускулярно-волновой дуализм. Фотоэффект

Свет имеет двойственную корпускулярно-волновую природу, т. е. корпускулярно-волновой дуализм:

  • во-первых: он имеет волновые свойства;
  • во-вторых: он выступает в роли потока частиц — фотонов.

Гипотеза А. Эйнштейна, которую он выдвинул в 1905 г.: электромагнитное излучение не только испускается квантами, но распространяется и поглощается в виде частиц (корпускул) электромагнитного поля — фотонов.

Фотоны являются реально существующими частицами электромагнитного поля.
Фотон обладает массой покоя:

Энергией и импульсом:

Световая волна, которая падает на тело, отчасти отражается от него и в какой-то степени проходит насквозь, частично поглощается.

Тогда энергия поглощения световой волны переходит в тело, т.е. нагревает тело. Часто известная часть этой поглощенной энергии активизирует и другие явления, такие как:

  • фотоэлектрический эффект;
  • давление света;
  • эффект Комптона;
  • люминесценция и фотохимические превращения.

Все эти процессы объясняются на основе корпускулярных свойств света.

Фотоэффект — это явление взаимодействия электромагнитного излучения с веществом. Для твердых и жидких тел распознают внешний фотоэффект, при котором поглощение фотонов сопровождается вылетом электронов за пределы тела, и внутренний фотоэффект, при котором электроны, оставаясь в теле, изменяют свое энергетическое состояние.

Фотоионизация — это процесс фотоэффекта, который наблюдается в газах и состоящий в ионизации атомов (молекул) под действием излучения.

Фототок — это ток, который возникает в цепи, где пластинка присоединена к отрицательному полюсу источника — фотокатода. Фототок возникает практически одновременно с освещением фотокатода. Фототок насыщения прямо пропорционален интенсивности света, падающего на цинковую пластинку.

Красная граница фотоэффекта — это предельная длина волны при явлении фотоэффекта, возникающая тогда, когда цинк облучается светом.

Фототок существует и тогда, когда в цепи нет источника тока.
Это объясняется тем, что часть электронов покидает катод и достигает анода.
Чтобы фототок стал равным нулю, нужно приложить задерживающее отрицательное напряжение — .

Законы фотоэффекта:

  • Для каждого вещества существует предельная длина волны — красная граница фотоэффекта.
  • Число фотоэлектронов, вырываемых из фотокатода в единицу времени, пропорционально интенсивности светового потока.
  • Максимальная начальная скорость фотоэлектронов определяется частотой излучения и не зависит от интенсивности светового потока, падающего на фотокатод.
  • Фотоэффект практически безинерционен.

Объяснение фотоэффекта Эйнштейном

При поглощении света металлом фотон отдает свою энергию одному электрону.

Часть этой энергии затрачивается на то, чтобы электрон мог оставить тело. Если электрон освобождается светом не у самой поверхности, а на некоторой глубине, то часть энергии, может быть потеряна им вследствие случайных столкновений в веществе и идет на нагревание вещества.

Остаток энергии образует кинетическую энергию электрона, покинувшего вещество.

Энергия вылета электрона будет максимальной, если электрон выбивается светом с поверхности металла.Уравнение Эйнштейна для фотоэффекта:

Это объясняет то, что максимальная кинетическая энергия фотоэлектрона, а следовательно, и его максимальная начальная скорость зависят от частоты света и работы выхода, но не зависят от мощности светового потока:

Красная граница фотоэффекта зависит только от работы выхода электрона:

Модель атома по Бору

Постулаты Бора:

  • Атомы, несмотря на то что электроны в них движутся с ускорением, могут длительно находиться в состояниях, в которых они не излучают (стационарные или разрешенные состояния).
  • В каждом из них атом обладает энергией E1,E2, .. Радиус электрона, при движении по круговым орбитам, определяется из условия:
  • Атом излучает лишь тогда, когда электрон скачком переходит из одного состояния с большей энергией в другое, с меньшей энергией. Частота излучения при этом равна:

Возбужденное состояние — это состояние атома, в котором он имеет энергию большую, чем в основном состоянии.

Квантование — это метод отбора орбит электронов, соответствующих стационарным состояниям атома.

Условие Бора позволило отобрать возможные круговые орбиты электронов в атоме водорода и объяснить спектр излучения атома водорода.

Метод квантования Бора был обобщен А. Зоммерфельдом, который показал, что квантовых условий должно быть столько, сколько степеней свободы имеет рассматриваемый тип движения.

Орбитальное квантовое число — это физическая величина, характеризующая форму орбиты, которая представлена в виде заряженных облаков.

Принцип Паули: в атоме не может находиться два и более электронов с одинаковым набором квантовых чисел.

Вырожденные состояния — это состояния одинаковой энергии; число различных состояний с какими-либо значениями энергии — кратность вырождения соответствующего энергетического уровня.
Каждый уровень энергии водородного атома имеет вырождение кратности

Количественные показатели в радиоэкологии.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид – токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний – альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе – токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.Активность – количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности – Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения – количественная мера воздействия излучения на объект. В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы – это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека – основной дозовый предел (1 мЗв/год) – вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Ссылка на основную публикацию