Системы единиц

Экспериментальное определение элементарного электрического заряда

Число Авогадро и постоянная Фарадея

Если известны число Авогадро NA и постоянная Фарадея F, величину элементарного электрического заряда можно вычислить, используя формулу

e=FNA{\displaystyle e={\frac {F}{N_{\mathrm {A} }}}}

(другими словами, заряд одного моля электронов, делённый на число электронов в моле, равен заряду одного электрона.)

По сравнению с другими, более точными методами, этот метод не даёт высокой точности, но всё-таки точность его достаточно высока.
Ниже приводятся подробности этого метода.

Значение постоянной Авогадро NA было впервые приблизительно измерено Иоганном Йозефом Лошмидтом, который в 1865 году определил на газокинетической основе размер молекул воздуха, что эквивалентно расчету числа частиц в заданном объёме газа. Сегодня значение NA может быть определено с очень высокой точностью с использованием очень чистых кристаллов (как правило — кристаллов кремния) путём измерения расстояния между атомами с использованием дифракции рентгеновских лучей; или другим способом, с точным измерением плотности кристалла. Отсюда можно найти массу (m) одного атома, а так как молярная масса (M) известна, число атомов в моле может быть рассчитано так: NA = M/m.

Величина F может быть измерена непосредственно с помощью законов электролиза Фарадея. Законы электролиза Фарадея определяют количественные соотношения, основанные на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1834 году. В эксперименте электролиза существует взаимно-однозначное соответствие между количеством электронов проходящих между анодом и катодом, и количеством ионов, осевших на пластине электрода. Измеряя изменения массы анода и катода, а также общий заряд, проходящий через электролит (который может быть измерен как интеграл по времени от электрического тока), а также учитывая молярную массу ионов, можно вывести F.

Ограничения на точность метода заключается в измерении F. Лучшие экспериментальное значения имеют относительную погрешность 1,6 промилле, что примерно в тридцать раз больше, чем в других современных методах измерения и расчета элементарного заряда.

Опыт Милликена

Основная статья: Опыт Милликена

Известный опыт по измерению заряда электрона e. Маленькая капля масла в электрическом поле будет двигаться с такой скоростью, что будут скомпенсированы сила тяжести, сила Стокса (производная от вязкости воздуха) и электрическая сила. Сила тяжести и Стокса могут быть рассчитаны исходя из размера и скорости падения капли в отсутствие электрического поля, откуда может быть определена и электрическая сила, действующая на каплю. Поскольку электрическая сила, в свою очередь, пропорциональна произведению электрического заряда и известной, заданной в эксперименте, напряжённости электрического поля, электрический заряд капли масла может быть точно вычислен. В этих опытах измеренные заряды различных капель масла оказались всегда целыми кратными одной небольшой величины, а именно e.

Дробовой шум

Основная статья: Дробовой шум

Любой электрический ток сопровождается электронным шумом от различных источников, одним из которых является дробовой шум. Существование дробового шума связано с тем, что ток является не непрерывным, а состоит из дискретных электронов, которые поочерёдно поступают на электрод. Путём тщательного анализа шума тока может быть вычислен заряд электрона. Этот метод, впервые предложенный Вальтером Шоттки, может давать значение е с точностью до нескольких процентов. Тем не менее, он был использован в первом прямом наблюдении Лафлином квазичастиц, причастных к дробному квантовому эффекту Холла.

Эффект Джозефсона и константа фон Клитцинга

Другим точным методом измерения элементарного заряда является вычисление его из наблюдения двух эффектов квантовой механики: эффекта Джозефсона, при котором возникают колебания напряжения в определённой сверхпроводящей структуре и квантового эффекта Холла, эффекта квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Постоянная Джозефсона

KJ=2eh,{\displaystyle K_{\mathrm {J} }={\frac {2e}{h}},}

где h — постоянная Планка, может быть измерена непосредственно с помощью эффекта Джозефсона.

RK=he2{\displaystyle R_{\mathrm {K} }={\frac {h}{e^{2}}}}

может быть измерена непосредственно с помощью квантового эффекта Холла.

Из этих двух констант может быть вычислена величина элементарного заряда:

e=2RKKJ.{\displaystyle e={\frac {2}{R_{\mathrm {K} }K_{\mathrm {J} }}}.}

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

1846. Сколько электронов вращается вокруг ядра в нейтральном атоме:а) углерода, б) серебра, в) урана?

1847. Каков заряд (в элементарных зарядах е) ядер атомов кислорода !gO, калия JgK и меди ggCu? Найдите массу (в а.е.м.) ядер атомов этих же элементов.

1848. Масса ядра атома какого элемента меньше: магния 12 Mg или водорода jH? Во сколько раз?

1849. Каково массовое число ядра атома азота ^N? Какова масса ядра в а.е.м. (с точностью до целых чисел)?

14

1850. Каково зарядовое число ядра атома азота ^N? Каков заряд ядра (в элементарных зарядах е)?

7, 7e.

1851. Определите число электронов в атоме брома з°Вг. Чему равен (в элементарных зарядах е) суммарный заряд всех электронов?

1852. Сколько нуклонов входит в состав ядра атома бора !!?В? олова XgQВ? полония 2Ро?

1853. Сколько протонов и нейтронов содержит ядро атома:а) гелия IНе;б) алюминия 13 А1;в) фосфора 15 Р? 

1854. Для нейтрального атома лития gLi определите число нуклонов, протонов, нейтронов и электронов.

1855. Для нейтрального атома фтора определите число нуклонов, протонов, нейтронов и электронов.

1856. Определите число нуклонов, протонов, нейтронов и электронов, содержащихся в нейтральном атоме неона 20 Ne lOi’NC.

1857. Для нейтрального атома цинка ^Zn определите число нуклонов, протонов, нейтронов и электронов.

1858. Определите число протонов, нейтронов, электронов и нуклонов в нейтральных атомах: ^О; ^О; ^О? Чем отличаются эти атомы? Что в них общего?

1859. Запишите реакцию естественного радиоактивного распада радия 2ggRa, при котором испускается а-частица. Найдите образующийся при этом химический элемент.

1860. Запишите реакцию радиоактивного распада изотопа свинца 2^РЬ С испусканием р-частицы. Во что при этом превращается ядро изотопа свинца?

1861. Запишите реакцию радиоактивного распада плутония, в результате которого 2gPu превращается в уран 235 т т 92 U *

1862. Запишите реакцию радиоактивного распада натрия, в результате которого 22 Na превращается в магний

1863. Найдите неизвестные элементы в следующих реакциях радиоактивного распада:zX^2°!Pb+>;

1864. Ядро атома криптона ^Кг шесть раз испытало радиоактивный (3-распад. Какое ядро получилось в результате? Запишите реакции.

1865. Ядро атома ксенона ^JXe превращается в стабильное ядро атома церия ^gCe. Сколько электронов при этом испускается? Запишите эти реакции. 

1866. Как меняется массовое число элемента при испускании ядром у-кванта? Изменяются ли при этом масса ядра и порядковый номер элемента?

1867. а-Частица испускается ядром, образовавшимся при бомбардировке изотопа бора В нейтронами. В ядрокакого элемента превратился изотоп бора ^В? Запишите эту реакцию.

1868. При облучении плутония ^Ри ядрами неона ^Neполучается элемент резерфордий и еще четыре нейтрона. Напишите реакцию.

1869. Допишите неизвестные символы X, Z, А ядерных реакций:а) *Н + JX-^He+o’n;б) %Х+\Н^>32Не+*11е;в) ^U+fX^Es + бЯ{Указание. Используйте Периодическую таблицу Менделеева.)

1870. Масса атома бора равна 11,009305 а.е.м., масса атома водорода равна 1,007825 а.е.м., масса нейтрона — 1,008665 а.е.м. Найдите дефект массы ядра бора “В. Какова энергия связи ядра бора?

  • Нравится

Дробный электрический заряд

С открытием кварков стало понятно, что элементарные частицы могут обладать дробным электрическим зарядом, например, 13 и 23 элементарного. Однако подобные частицы существуют только в связанных состояниях (конфайнмент), таким образом, почти все известные свободные частицы (и все стабильные и долгоживущие) имеют электрический заряд, кратный элементарному, хотя рассеяние на частицах с дробным зарядом наблюдалось.

Исключением является t-кварк, его время жизни (~1·10−25) настолько мало́, что он распадается раньше, чем успевает подвергнуться адронизации, и поэтому встречается только в свободном виде. Заряд t-кварка по прямым измерениям равен +23e.

Неоднократные поиски долгоживущих свободных объектов с дробным электрическим зарядом, проводимые различными методиками в течение длительного времени, не дали результата.

Стоит, однако, отметить, что электрический заряд квазичастиц также может быть не кратен целому. В частности, именно квазичастицы с дробным электрическим зарядом отвечают за дробный квантовый эффект Холла.

Закон сохранения заряда

Так как уже было указано, что никакого создания заряда не происходит, а происходит лишь перераспределение, то имеет смысл сформулировать закон сохранения заряда:

В замкнутой системе алгебраическая сумма электрических зарядов остается постоянной (рис. 12). Замкнутой системой называется система тел, из которой заряды не уходят и в которую заряженные тела или заряженные частицы не поступают.

Рис. 13. Закон сохранения заряда

Данный закон напоминает о законе сохранения массы, так как заряды существуют только вместе с частицами. Очень часто заряды по аналогии называют количеством электричества.

До конца закон сохранения зарядов не объяснен, так как заряды появляются и исчезают только попарно. Другими словами, если заряды рождаются, то только сразу положительный и отрицательный, причем равные по модулю.

На следующем уроке мы подробнее остановимся на количественных оценках электродинамики.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «youtube.com» (Источник)
  2. Интернет-портал «abcport.ru» (Источник)
  3. Интернет-портал «planeta.edu.tomsk.ru» (Источник)

Домашнее задание

  1. Стр. 356: № 1–5. Касьянов В.А. Физика 10 класс. – М.: Дрофа. 2010.
  2. Почему отклоняется стрелка электроскопа, если к нему прикоснуться заряженным телом?
  3. Один шар заряжен положительно, второй – отрицательно. Как изменится масса шаров при их соприкосновении?
  4. *К шару заряженного электроскопа поднесите, не дотрагиваясь, заряженный металлический стержень. Как изменится отклонение стрелки?

Квантование электрического заряда

Любой наблюдаемый в эксперименте электрический заряд всегда кратен одному элементарному — такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году.

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

  • Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с электрическим зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что существование всего одного магнитного монополя влечёт за собой квантование всех электрических зарядов во Вселенной. Однако обнаружить в природе магнитный монополь не удалось.
  • В современной физике элементарных частиц разрабатываются модели наподобие преонной, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».
  • Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени (скажем, топологическим). Такой подход развивается, например, в , в которой фермионы Стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу (брэд), а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.

Изучение статического электричества

К систематическому изучению природы электростатики учёные приступили со времён работ французского учёного 18-го века Шарля Огюстена де Кулона. В частности, он ввёл понятие электрического заряда и открыл закон взаимодействия зарядов. По его имени названа единица измерения количества электричества — кулон (Кл). Правда, ради исторической справедливости, надо заметить, что годами ранее этим занимался английский учёный лорд Генри Кавендиш; к сожалению, он писал в стол и его работы были опубликованы наследниками лишь спустя 100 лет.

Работы предшественников, посвященные законам электрических взаимодействий, дали возможность физикам Джорджу Грину, Карлу Фридриху Гауссу и Симеону Дени Пуассону создать изящную в математическом отношении теорию, которой мы пользуемся до сих пор. Главным принципом в электростатике является постулат об электроне — элементарной частице, входящей в состав любого атома и легко отделяющейся от него под воздействием внешних сил. Помимо этого, действуют постулаты об отталкивании одноимённых зарядов и притягивании разноимённых.

Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.

  • Электрический заряд Q : это физическая величина, характеризующая свойство тел вступать в электрическое взаимодействие. Одноименные заряды отталкиваются, а разноименные заряды притягиваются
  • Элементарный заряд: e=1,6*10-19 Кл это минимальная порция заряда, котрая может передаваться от одного тела к другому (заряд протона или электрона)
  • Электрическое поле: это создаваемый любым электрическим зарядом материальный объект, непрерываный в пространстве, проявляющийся в том, что действет на другие заряды.
  • Проводник: это материал, по которому заряд может свободно перемещаться от одного тела к другому.
  • Диэлектрик: это материал, по которому электрический заряд при обычных условиях перемещаться не может.
  • Закон сохранения электрического заряда: в замкнутой системе алгебраическая (с учетом знаков +/-) сумма зарядов остается постоянной
  • Закон Кулона: сила взаимодействия двух точечных зарядов (=кулоновская сила) направлена вдоль прямой, соединяющей заряды, прямо пропорциональна модулю зарядов и обратно пропорциональна квадрату расстояния между ними:
  • Принцип суперпозиции для электрических зарядов: результирующая сила, действующая на данный заряд q1 со стороны нескольких зарядов q2…..qn, равна геометрической сумме (= векторной сумме) сил F12+….F1n, действующих на данный заряд со стороны каждого из зарядов:
  • Напряженность электрического поля [В/м]: E (векторная величина) это отношение силы F (векторной величины) с которой поле действует на точечный заряд q (скалярной величины), к этому заряду (с учетом знака заряда):
  • Напряженность электрического поля единичного точечного заряда Q: на расстоянии r от него (напрямую следует из закона Кулона):
  • Принцип суперпозиции электрических полей: если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых E1,E2,….En, то результирующая напряженность электрического поля в этой точке равна векторной сумме отдельных напряжённостей:
  • Потенциальная энергия: заряда q в однородном электростатическом поле напряженности E:

    • ,
    • где d — расстояние до плоскости, где потенциальная энергия принимается равной нулю
  • Потенциал электростатического поля в точке : это отношение потенциальной энергии заряда в поле, к этому заряду (с учетом знака заряда):

    • Вариант 2: это работа по перемещению единичного положительного заряда из данной точки в бесконечность
  • Напряжение = Разность потенциалов между точками: это отношение работы поля при перемещении заряда из начальной точки в конечную к этому заряду ( с учетом знака заряда):

    • Численно (но не по размерности) это работа поля по перемещению единичного положительного заряда из одной точки в другую
  • Связь разности потенциалов и напряженности: в однородном поле:

    • где U это разность потенциалов между точками, которые cвязаны вектором перемещения Δd, совпадающим по направлению с вектором E
  • Электроемкость двух проводников: это отношение заряда Q одного из проводников к разности потенциалов U между этим проводником и соседним:
  • Конденсатор: это система двух проводников (обкладок конденсатора), разделенных слоем диэлектрика, толщина которого мала по отношению к размерам обкладок
  • Напряженность поля плоского конденсатора:
  • Электроемкость плоского конденсатора:
  • Энергия заряженного конденсатора:

Элементарные частицы

Что же происходит с телами при электризации? Представьте себе два одинаковых металлических шара, но только один из них заряжен отрицательно, а другой не заряжен (см. рис. 10).

Рис. 10. Заряженный и незаряженный шары

Известно, что все тела состоят из атомов, а те, в свою очередь, состоят из протонов, нейтронов, электронов (см. рис. 11).

Рис. 11. Атом

Протоны заряжены положительно, электроны – отрицательно. Будем называть их элементарными зарядами, то есть неделимыми. Так вот, в большинстве случаев в атоме количество протонов равняется количеству электронов и получается, что они полностью компенсируют друг друга и в целом атом нейтрален

Важно понимать, что в атоме заряды никуда не исчезают, там по-прежнему есть положительные и отрицательные частицы, просто их действие на далекие предметы полностью компенсируется (см. рис

12).

Рис. 12. Действие частиц компенсировано

А вот в шаре, заряженном отрицательно, электронов больше, чем протонов, поэтому в целом в теле количество отрицательных элементарных зарядов больше, чем количество положительных элементарных зарядов, и тело заряжено отрицательно (см. рис. 13).

Рис. 13. Количество электронов в заряженном шаре

Заряд макроскопического тела (состоящего из большого количества атомов) – это величина, показывающая разность между положительными и отрицательными зарядами в теле. Если это количество одинаково, то заряд нулевой. Величина элементарного заряда известна и равна . Соответственно, заряд протона договорились считать положительным , а заряд электрона – отрицательным .

Что же происходит при трении тел друг о друга, например пластика о шерсть? Электроны с внешних оболочек атомов, входящих в состав шерсти, «перепрыгивают» на пластмассу (см. рис. 14).

Рис. 14. Движение электронов при трении

Получается, что в шерсти становится меньше отрицательных электронов и она заряжается положительно, а пластмасса – отрицательно, так как в ней появляется избыточное количество электронов. Можно даже сказать: если при контакте заряд одного тела увеличивается, то у другого уменьшается.

Что касается искр между людьми, то это происходит, если хотя бы один человек «заряжен» (допустим, человек ходил по шерстяному ковру, при трении подошвами по нему), и если другой человек не заряжен также, то заряд будет перетекать с одного человека на другого, иногда это перетекание может быть даже по воздуху, в таком случае и появляется искра. Стоит отметить, что искра появляется только благодаря движению электронов, протоны находятся в ядрах атомов, они менее подвижны и не могут покидать атомов отличие от электронов.

Зарядить тело можно и без контакта – через влияние электрическим полем. Представьте себе незаряженный шар, к которому подносят положительно заряженную палочку – разноименные заряды притягиваются, поэтому электроны, которые были в шаре, притянутся к положительно заряженной палочке и скопятся в той части шара, которая ближе к ней (см. рис. 15).

Рис. 15. Влияние положительно заряженной палочки на электроны

Почему незаряженные частицы фольги притягиваются к заряженной расческе?

Оказывается, незаряженный кусочек фольги будет притягиваться к заряженной расческе. Как же так? В целом кусочек фольги электрически нейтрален. Давайте посмотрим, что произойдет, если мы поднесем отрицательно заряженную расческу к кусочку фольги – отрицательно заряженная расческа притягивает к себе положительный заряд и отталкивает отрицательный. Поэтому электроны отодвинутся дальше от границы, а сторона, которая находится ближе к расческе, будет заряжена положительно (см. рис. 16) и притяжение будет сильнее, чем отталкивание, потому что положительная часть фольги находится ближе к расческе.

Рис. 16. Расположение электронов в фольге при поднесении расчески

Электрический заряд

Из всех известных фундаментальных типов взаимодействия наиболее распространенными являются электромагнитные. Простейший пример этих взаимодействий — притяжение и отталкивание наэлектризованных тел.

Впервые его наблюдал Фал ее (VII в. до н.э.), используя янтарную палочку, потертую о шерсть. Позже В.Гильберт (XVI в.) обнаружил, что свойством притягивать легкие предметы обладают, кроме янтаря, фарфор и многие другие тела, предварительно натертые кожей или другими мягкими материалами. Это явление В. Гильберт назвал электризацией (electron по-гречески — янтарь).

О телах, способных к таким взаимодействиям, говорят, что они электрически заряжены, т.е. им сообщен электрический заряд.

Электрический заряд q — это количественная мера способности тел к электромагнитным взаимодействиям.

Единицей электрического заряда в СИ является кулон. 1 кулон есть электрический заряд, переносимый через поперечное сечение проводника за 1 с при силе тока 1 А.

Опыты по электризации тел трением, взаимодействию незаряженной станиолевой гильзы с заряженной палочкой показывают, что:

  1. существуют два рода электрических зарядов, которые условно называют положительными и отрицательными; заряд элементарных частиц — протонов, входящих в состав любого ядра, называют положительным, а заряд электронов — отрицательным;
  2. при взаимодействии одноименные заряды отталкиваются, разноименные притягиваются. На этом свойстве зарядов основано действие простейших приборов — электроскопа и электрометра;
  3. современная физика приводит к выводу о существовании элементарного заряда, являющегося неотъемлемым свойством ряда элементарных частиц. Впервые немецкий физик Г. Гельмгольц в 1881 г. высказал гипотезу, объясняющую электрические явления существованием электрически заряженных элементарных частиц. Впоследствии эта гипотеза подтвердилась открытием электрона (в 1897 г. английским физиком У. Томсоном) и протона (в 1919 г. Э. Резерфордом). Электрон — это элементарная частица, заряд которой е = -1,6·10-19 Кл, масса me = 9,1·10-31 кг. Протон имеет положительный заряд е = 1,6·10-19 Кл, а масса протона в 1836 раз больше массы электрона;
  4. электрический заряд дискретен (это доказано опытным путем американским физиком Р. Милликеном и русским физиком А. Ф. Иоффе). Это значит, что любой заряд, больший элементарного, состоит из целого числа элементарных зарядов q = ±N·e, где N = 1, 2, 3… В теле, электрически нейтральном, число протонов и электронов одинаково и они равномерно распределены по объему. Если число электронов в теле меньше числа протонов, то оно заряжено положительно, а если заряд обусловлен избытком электронов, то тело заряжено отрицательно. Именно этот избыточный заряд определяет собой электрические свойства тела, и его называют зарядом тела, q = (N+N) e, где N+ — число протонов, N — число электронов. Процесс, приводящий к появлению на телах или разных частях тела избыточного заряда, называют электризацией;
  5. заряд инвариантен, т.е. не зависит от характера движения заряженной частицы, ни от ее взаимодействия с другими частицами, ни от выбора системы отсчета. Об этом свидетельствуют многие факты. Так, неионизированный атом и молекула нейтральны: заряды электронной оболочки атома и ядра в точности равны друг другу. А между тем характер движения электронов и ядер совершенно различен. Кроме того, при химических превращениях движение электронов в оболочках атомов изменяется, что приводит к изменению характера спектров атомов. Если бы заряд зависел от скорости движения частиц, то в химических реакциях могли бы появиться нескомпенсированные электрические заряды, но это не обнаружено.

Электризация, виды зарядов

На прошлом уроке мы уже упоминали о ранних экспериментах в электростатике. Все они были основаны на натирании одного вещества о другое и дальнейшем взаимодействии этих тел с малыми объектами (пылинками, клочками бумаги…). Все эти опыты основаны на процессе электризации.

Определение. Электризация – разделение электрических зарядов. Это значит, что электроны от одного тела переходят к другому (рис. 1).

Рис. 1. Разделение электрических зарядов

До момента открытия теории о двух принципиально разных зарядах и элементарного заряда электрона считалось, что заряд – некая невидимая сверхлегкая жидкость, и, если она есть на теле, значит, тело обладает зарядом и наоборот.

Первые серьезные опыты по электризации различных тел, как уже было сказано на предыдущем уроке, проводил английский ученый и врач Уильям Гильберт (1544-1603), однако ему не удавалось наэлектризовать металлические тела, и он посчитал, что электризация металлов невозможна. Однако это оказалось неправдой, что впоследствии доказал русский ученый Петров. Однако следующий более важный шаг в исследовании электродинамики (а именно открытие разнородных зарядов) сделал французский ученый Шарль Дюфе (1698-1739). В результате своих опытов он установил наличие, как он их назвал, стеклянных (трение стекла о шелк) и смоляных (янтаря о мех) зарядов.

Еще через некоторое время были сформулированы следующие законы (рис. 2):

1) одноименные заряды взаимно отталкиваются;

2) разноименные заряды взаимно притягиваются.

Рис. 2. Взаимодействие зарядов

Обозначения положительных (+) и отрицательных (–) зарядов было введено американским ученым Бенджамином Франклином (1706-1790).

По договоренности принято называть положительным заряд, который образуется на стеклянной палочке, если натирать ее бумагой или шелком (рис. 3), а отрицательный – на эбонитовой или янтарной палочке, если натирать ее мехом (рис. 4).

Рис. 3. Положительный заряд

Рис. 4. Отрицательный заряд

Открытие Томсоном электрона наконец дало ученым понять, что при электризации никакая электрическая жидкость не сообщается телу и никакой заряд не наносится извне. Происходит перераспределение электронов, как мельчайших носителей отрицательного заряда. В области, куда они приходят, их количество становится большим, чем количество положительных протонов. Таким образом, появляется нескомпенсированный отрицательный заряд. И наоборот, в области, откуда они уходят, появляется нехватка отрицательных зарядов, необходимых для компенсации положительных. Таким образом, область заряжается положительно.

Было установлено не только наличие двух разных видов зарядов, но и два различных принципа их взаимодействия: взаимное отталкивание двух тел, заряженных одноименными зарядами (одного знака) и соответственно притяжение разноименно заряженных тел.

Ссылка на основную публикацию