Ресурсы энергии солнца и ветра на земле

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

Использование энергия солнца на земле доклад

Древние язычник в далекие времена воспринимали наше Солнце словно божество. Ему поклонялись и отдавали дань уважения. Конечно, прошло время, цивилизация продвинулась вперед и вот уже в XIX-XX веках ученые начали изучать солнечную энергию, и применять еехозяйственной сфере. Ученые создавали солнечные панели, которые могли принять и использовать энергию Солнца, это стало не только большим прорывом для человечества, это стало толчком, для новых важных открытий. Всем известно, что Солнце издает большое количество энергии. Этой энергии хватит, чтобы обеспечить нашу планету электричеством на долгие годы. С помощью солнечных батарей, мы можем получать эту энергию для своих нужд. С каждым годом такие батареи изменяют и усовершенствуют. На сегодняшний день эта промышленность еще не особо развита, но скорее всего, в будущем, солнечная энергия займет одно из первых мест в энергетике.

Все мы знаем, что Солнце неиссякаемый и первоначальный источник всех энергетических процессов. Его энергия, достигая Земли, превращается в тепло. Именно благодаря Солнцу обогреваются реки, воздух и земля. Но много тепла теряется и в космосе. Энергии Солнца вполне хватит, чтобы покрыть все потребления населения. Самое главное при этом, что использование солнечной энергии достаточно безопасный процесс для природы и всего живого вокруг. Сама по себе, солнечная энергия чистая в экологическом плане, атомные электростанции намного больше приносят вреда Земле, чем энергия солнца. Конечно, при использовании солнечной энергии возникают различные проблемы. Достаточно знать о том, что Солнце светит только днем, то есть энергия будет поступать только в дневное время. Поэтому необходимо придумать процесс накопления энергии днем, чтобы спокойно использовать ее ночью.

В каких же сферах все-таки применяют солнечную энергию? В первую очередь, это летний дачный душ, в котором бак воды нагревают солнечные лучи. Солнечные коллекторы, набирающие популярности на сегодняшний день, дают возможность обогреть целый дом. От таких коллекторов можно не только получить тепло, но еще и зарядить телефон, подогреть воду в баке, и получить свет. Большим спросом пользуется энергия солнца в народном хозяйстве. Ею обогревают ангары, парники и многие другие постройки. Увеличивается энергоснабжение больниц и спортивных учреждений. Отличным вариантом в применении солнечной энергии стало освещение улиц и городских объектов. Многие бытовые нужды решаются с помощью солнечных коллекторов и батарей. Солнечные установки имеют больше преимуществ, чем недостатков.

В первую очередь их использование безопасно и бесконечно, они полностью автономны, долговечны и стабильны. Конечно, стоят они не дешево, но их цена со временем окупится, и будет только радовать. С каждым годом человечество придумывает все новые, и новые способы использовать солнечную энергию. Если не так давно ее использовали только для обогрева дома, то теперь вырабатывают электричество, для подачи не только света, но и воды в большие населенные пункты. Создаются и усовершенствуются гелиосистемы, с помощью которых в районах, чаще всего это пустыни и степи, где солнце светит постоянно, можно установить электростанцию и получать электричество. Благодаря этому неприспособленные к жизни места, станут заселенными, построятся дома, появится электричество и водопровод. Энергия будет использоваться на все нужды населения.

Уже сегодня во многих странах установлены и используются солнечные батареи. В странах Азии, Египте и Турции прекрасно пользуются солнечной энергией. Люди надеются, что в скором времени это приобретет большого использования и станет доступно многим людям, ведь это не только экономит затраты на отопление и электроэнергию, это еще и не приносит вред нашему здоровью.

Где мы чаще всего встречаем использование энергии Солнца

Да, работа с солнечной энергией уже не стала обыденностью для человека. Наверное, это началось еще тогда, когда на калькуляторах стали устанавливать маленькую солнечную панель, позволяющую ему функционировать без батарейки. Помните? Мы в детстве часто задавались вопросом, для чего нужна эта штука, которая, в большинстве случаев просто на просто не работала.

В наше время чаще всего встретить использование солнечных панелей можно в обыденной жизни человека. И речь идет не только о заполнении поверхности крыши частного дома этими блестящими, причудливыми произведениями научного искусства, но и о том, как используется и преобразуется энергия солнечного света в промышленных масштабах.

Данное проявление смекалки тоже стало распространяться по территории нашей страны. Согласитесь, зачем производству покупать электричество у государства, если можно производить его, и продавать этому же государству. Верно? Наиболее продвинутые компании, которые, естественно, не требуют огромного количества энергии для работы своего производства, устанавливают целые поля, занимающие далеко не один гектар земли, солнечными панелями. Они помогают им значительно экономить на оплате счетов за электричество, и окупают себя в течение нескольких лет, после чего начинают приносить прибыль. Можно сказать, что это некий способ инвестирования, который позволяет экономить.

В быту же используется солнечная энергия менее затратными способами. Вы можете не только добывать электрическую энергию при помощи солнечных панелей, но и нагревать воду и отапливать помещение при помощи солнечный коллекторов. Эта конструкция не такая сложная, как вы думаете. Она имеет порядка 4-5 основных частей, которые можно собрать самостоятельно, однако, для того, чтобы они исправно функционировали вместе, требуется владеть не только определенными знаниями, но и навыками, позволяющими настроить исправную работу.

Также, стоит помнить, что любая неквалифицированная работа может привести к несчастным случаям, фатальным последствиям и, даже, жертвам. Вы согласитесь, что работа с прибором, который способен нагревать воду до 200-280 градусов, при котором она моментально испаряется, не всегда безопасно. Особенно, если человек не понимает, что может произойти.

Доверяйте это профессионалам!

Презентация на тему: » ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ СОЛНЦА НА ЗЕМЛЕ Матвеев Юрий, 9 «А» класс.» — Транскрипт:

1

ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ СОЛНЦА НА ЗЕМЛЕ Матвеев Юрий, 9 «А» класс

2

Солнце является источником жизни для всего земногоисточником жизни СолнцеСолнце – это основной источник энергии на земле и первопричина, создавшая большинство других энергетических ресурсов нашей планеты, таких, как запасы каменного угля, нефти, газа, энергии ветра и падающей воды, электрической энергии и т.д. Энергия Солнца, которая в основном выделяется в виде лучистой энергии, так велика, что её трудно даже себе представить.

3

В Нью-Йорке солнечную энергию используют даже мусорщики. Здесь в двух районах уже полтора года действуют интеллектуальные солнечные контейнеры для мусора — BigBelly. Используя энергию света, преобразованную в электричество кремниевыми фотоэлементами они утрамбовывают слдержимое.

4

Источников энергии на Земле существует много, но, судя по тому, как стремительно растут цены на энергоресурсы, их все равно не хватает. Многие специалисты полагают, что уже к 2020 году топлива потребуется в три с половиной раза больше, чем сегодня. Где же брать энергию?

5

Новейшая технология нанесения металлоксидной пленки на стеклянную подложку позволяет создавать крупные тонкопленочные солнечные модули. В Америке только на один проект — строительство в пустыне Негев (Израиль) солнечной электростанции — выделено 100 миллионов долларов.

6

Вблизи голландского городка Херхюговарда создан экспериментальный район «Город солнца». Крыши домов здесь покрыты солнечными панелями. Дом на снимке вырабатывает до 25 кВт. Общую мощность «Города солнца» планируется довести до 5 МВт. Такие дома становятся автономными от системы.

7

Солнце можно использовать и как источник энергии для транспортных средств. В Австралии уже 19 лет проводятся ежегодные гонки на солнечных электромобилях на трассе между городами Дарвин и Аделаида (3000 км). В 1990 году компания Sanyo построила самолет на солнечных батареях.

8

Под солнечной крышей МИРА (энергостанции и «солнечные дома») Сфокусированный СВЧ-луч может передавать собранную солнечными батареями энергию на Землю, а может снабжать ею космические корабли. В отличие от солнечного света этот СВЧ-луч при «пробое» атмосферы потеряет не более 2% энергии. Недавно задумку воскресил Дэвид Крисвелл.

9

Под солнечной крышей МИРА (энергостанции и «солнечные дома») Американская солнечная установка NSTTF для тепловых испытаний и экспериментов в области энергетики. Одним из старых способов забора солнечной энергии являетяся СЭС, придуманная Бернардом Дюбо. Он предлагал строить в пустынях обширные стеклянные навесы с высокой трубой.

10

Под солнечной крышей МИРА (энергостанции и «солнечные дома») Ассоциация TransOption, объединяющая государ- ственные и частные транспортные компании штата Нью-Джерси, ежегодно организуют среди школьных команд гонки автомобильных моделей, приводимых в движение солнечной энергией.

Популярные темы сообщений

  • Белладонна (растение)

    Беладонна – растение красивое, но в то же время и весьма ядовитое. К слову, также ее называют красавкой, но большинство людей все же помнит лишь первое, более привычное название. Что касается размеров, длина растения может достигать до двух метров.

  • Средневековье

    Средние века, или Средневековье – это исторический термин, который отображает период истории в Европе и Ближнего Востока. Начался он после периода Античности, а за ним последовал период Нового времени.

  • Река Обь

    Обь — крупная река России. Ее протяженность составляет 3650 км, а бассейн – почти 3 миллиона км, что делает ее рекордсменкой в этой области в РФ. Обь находится на западе России, большая ее часть протекает по Западно-Сибирской равнине.

ТОП-3: самые популярные способы получения солнечной энергии

Популярность тех или иных способов обуславливается такими факторами, как эффективность, надежность и стоимость технологии:

  1. Использование солнечных панелей (батарей);
  2. Солнечные коллекторы (гелиосистемы);
  3. Гелиотермальные электростанции.

Батареи и модули знакомы всем, кто хоть раз интересовался альтернативным способом получения электричества. Такие панели могут использоваться как в промышленных масштабах, так и для частных нужд. С помощью солнечной батареи можно решить множество задач: зарядить телефон, питать систему автономного освещения, обеспечить электричеством дом или целое поселение. В зависимости от поставленных целей, внутреннее устройство и принцип работы батарей отличаются друг от друга.

Гелиосистемы превращают энергию Солнца в тепловую. Они различаются между собой по типу конструкции и объемам производительности. Так плоские гелиосистемы сохраняют прежние объемы мощности при низкой температуре, зато вакуумные на 40% эффективней в ясную погоду. Любопытно, как использовать эту солнечную энергию в домашних условиях? Гелиосистемы могут быть компактных размеров: их устанавливают прямо в доме, чтобы сэкономить на отоплении и нагреве воды. В промышленных масштабах их используют для сушки сырья или для уменьшения нагрузки на отопительные узлы.

Гелиотермальные электростанции способны обеспечивать электричеством целые города. Их конструкция представляет собой управляемые компьютером зеркала, что ловят лучи и направляют их в центр башни. Под воздействием концентрированной солнечной энергии вода в башне становится паром, что обеспечивает достаточный уровень давления для вращения турбины, которая и вырабатывает электричество. Для сравнения: гелиотермальная электростанция Иванпа Солар вырабатывает столько же электричества, сколько и средняя московская ТЭЦ.

Геотермальная энергия энергия земли

Источники геотермальной энергии могут быть двух типов. Первый тип – это подземные бассейны естественных теплоносителей – горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси.

Рис. 15. Первый тип источников геотермальной энергии – подземные бассейны естественных теплоносителей

По существу, первый тип источников – это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин.

Второй тип – это тепло горячих горных пород. Закачивая в такие горизонты воду, можно на выходе получить пар или горячую воду для дальнейшего использования в энергетических целях. Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т. п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т.п.).

Рис. 16. Второй тип источников геотермальной энергии

Преимущества солнечного источника

  1. Согласно астрофизике, Солнце родилось около 4,57 миллиарда лет назад и имеет еще 6-7 миллиардов лет до того, как оно станет белым карликом (планетарная стадия, когда ядерное топливо в Звезде исчерпывается).
  2. Богатый потенциал ядерного топлива в звезде находится за пределами воображения. Поверхность Земли получает 120 000 тераватт солнечной радиации (солнечного света) – в 8640 раз больше энергии, чем необходимо для снабжения всего мира.
  3. Устойчивый богатый и возобновляемый источник энергии также является постоянным. Устойчивые источники энергии удовлетворяют потребности настоящего времени без ущерба для способности будущих поколений удовлетворять свои потребности. Другими словами, солнечная энергия является устойчивой, потому что мы не можем её чрезмерно потреблять.
  4. Экологически чистое использование солнечной энергии, как правило, не вызывает загрязнения окружающей среды. Однако есть выбросы, связанные с производством, транспортировкой и установкой солнечных энергетических систем – почти ничего по сравнению с большинством обычных источников. Очевидно, что этот тип ресурсов снижает нашу зависимость от невозобновляемых источников энергии. Это важный шаг в борьбе с климатическим кризисом.
    Известно, что сжигание ископаемого топлива высвобождает химические вещества и частицы, которые вызывают рак, повреждение мозга и нервов, врожденные дефекты, травмы легких и проблемы с дыханием. Токсичные вещества, выделяемые при сжигании углеводородов, загрязняют воздух и воду и вызывают кислотные дожди и смог. Эти негативные последствия сжигания ископаемого топлива для окружающей среды и жизни человека заставляют человека диверсифицировать энергетические ресурсы путем перехода к использованию энергии Солнца.
  5. Хорошая доступность во всем мире. Не только страны, которые находятся ближе всего к экватору, могут использовать солнечную энергию – Германия, например, имеет на сегодняшний день самую высокую мощность этого типа устройств.
  6. Снижение затрат на электроэнергию с введением чистых схем учета и ввода тарифов. Домовладельцы теперь могут “продавать” избыточную электроэнергию или получать кредиты на оплату счетов, когда они производят больше электроэнергии, чем они фактически потребляют.
  7. Финансовая поддержка со стороны правительства/государства.
  8. Низкие затраты на обслуживание.
  9. Совершенствование технологий по использованию энергии Солнца.

Варианты обустройства геотермального отопления

Способы обустройства внешнего контура

Для того, чтобы энергия земли для отопления дома была использована максимально – нужно правильно выбрать схему внешнего контура. По сути, источником тепловой энергии может быть любая среда – подземная, водяная или воздушная

Но при этом важно учитывать сезонные изменения погодных условий, о чем говорилось выше

В настоящее время распространены два вида систем, которые эффективно используются для отопления дома за счет тепла земли – горизонтальная и вертикальная. Ключевым фактором выбора является площадь земельного участка. От этого зависит схема расположения труб для отопления дома энергией земли.

Кроме него учитываются такие факторы:

  • Состав грунта. В скалистых и суглинке сложно делать вертикальные стволы для прокладки магистралей;
  • Уровень промерзания почвы. Он определит оптимальную глубину залегания труб;
  • Расположение подземных вод. Чем они выше – тем лучше для геотермального отопления. В таком случае температура с изменением глубины будет повышаться, что является оптимальным условием для отопления за счет энергии земли.

Также нужно знать и о возможности обратной передачи энергии в летний период. Тогда отопление частного дома от земли не будет функционировать, а избыток тепла будет переходить от дома в почву. По такому же принципу работают все холодильные системы. Но для этого необходимо установить дополнительное оборудование.

Нельзя планировать установку внешнего контура в отдалении от дома. Это увеличит тепловые потери в отоплении из недр земли.

Горизонтальная схема геотермального отопления

Горизонтальное расположение наружных труб

Самый распространенный способ установки наружных магистралей. Он удобен простотой монтажа и возможностью относительно быстрой замены неисправных участков трубопровода.

Для установки по этой схеме используется коллекторная система. Для этого делается несколько контуров, расположенных на минимальном удалении в 0,3 м друг от друга. Они соединяются с помощью коллектора, который подает теплоноситель далее в тепловой насос. Это обеспечит максимальное поступление энергии в отопление от тепла земли.

Но при этом нужно учитывать ряд важных нюансов:

  • Большая площадь приусадебного участка. Для дома около 150 м² она должна быть не менее 300 м²;
  • Трубы в обязательном порядке уславливаются на глубину ниже уровня промерзания почвы;
  • При возможном движении почвы во время весенних паводков увеличивается вероятность смещения магистралей.

Определяющим преимуществом отопления от тепла земли горизонтального типа является возможность самостоятельного обустройства. В большинстве случаев для этого не понадобится привлечение спецтехники.

Для максимальной передачи тепла нужно использовать трубы с высоким показателем теплопроводности — тонкостенные полимерные. Но при этом следует продумать способы утепления труб отопления в земле.

Вертикальная схема геотермального отопления

Вертикальная геотермальная система

Это более трудоемкий способ организации отопления частного дома от земли. Трубопроводы располагаются вертикально, в специальных скважинах

Важно знать, что подобная схема намного эффективнее, чем вертикальная

Ее основное преимущество заключается в увеличении степени нагрева воды во внешнем контуре. Т.е. чем глубже расположены трубы – тем больше количество тепла земли для отопления дома поступит в систему. Еще одним фактором является небольшая площадь земельного участка. В некоторых случаях выполняется обустройство наружного контура геотермального отопления еще до строительства дома в непосредственной близости от фундамента.

С какими трудностями можно столкнуться при получении энергии земли для отопления дома по этой схеме?

  • Количественное в качественное. Для вертикального расположения длина магистралей значительно выше. Она компенсируется большей температурой почвы. Для этого нужно делать скважины глубиной до 50 м. что является трудоемкой работой;
  • Состав почвы. Для скального грунта необходимо применить специальные буровые машины. В суглинке для предотвращения осыпания скважины монтируют защитную оболочку из ж/б или толстостенного пластика;
  • При возникновении неполадок или потере герметичности усложняется процесс ремонта. В этом случае возможны долговременные сбои в работе отопление дома за тепловой энергии земли.

Но невзирая на большие первичные затраты и трудоемкость монтажа, вертикальное расположение магистралей является оптимальным. Специалисты советуют применять именно такую схему установки.

Для циркуляции теплоносителя в наружном контуре в вертикальной системе нужны мощные циркуляционные насосы.

Квазиядерные реакции синтеза

Давление во внутреннем ядре Земли достигает порядка 3,6*10^6 бар. В местах пучностей продольных волн землетрясений в локальных областях давление повышается до 10^8 бар, при температуре порядка 6000К, достигая уровня, при котором возможно туннели́рование и протекание термоядерных реакций, как показано в работах Зельдовича и Ванг Хонг-цханга .

В местах, где возникают локальные очаги термоядерных реакций, должна резко возрастать температура. При этом происходит разложение гидридов, переход водорода из гидрид-ионной формы в протонный газ и, соответственно, выделение большого  количества водорода. При этом объем вещества существенно увеличивается без изменения массы (в одном кубическом сантиметре гидрида железа заключено 550 кубических сантиметров водорода). Что, в свою очередь, приводит к увеличению объёма вещества ядра  планеты, при незначительном изменении массы. Иными словами, гидриды внутреннего ядра разлагаются на металл внешнего ядра и водород,  что  должно приводить и к увеличению объема Земного шара . Следует отметить, что цепной термоядерной реакции происходить не может, т.к. избыток  тепла уходит с водородом-теплоносителем во внешние сферы (глубинные флюиды ), и температура падает.

Внутреннее ядро Земли как бы очень медленно «кипит» подобно смоле, т. е. при сложении упругих волн спорадически в разных местах внутреннего ядра возникают локальные реакции синтеза. Назовем этот процесс «квазитермоядерным» .

Энергетический баланс разложения гидридов в ядре можно представить в следующем виде:

∂QT + m = p ∂V + ∂QH, где m – химический потенциал водорода в гидридах, ∂QТ – термоядерное тепло, спорадических реакций синтеза водорода в ядре p ∂V – работа по разуплотнению (∂V) при давлении (p) в зоне разуплотнения, ∂QH– тепло, уносимое из зоны разуплотнения протонным газом (ядрами водорода) как теплоносителем, поэтому температура на поверхности твёрдого ядра должна быть выше, чем внутри .

Внутренняя энергия Земли

Поскольку магнитное поле генерируется во внутреннем ядре планеты , энергия, которая требуется для его поддержания, также является неотъемлемой составляющей полной внутренней энергии Земли. В оценке этой энергии существует большая неопределённость. Если в настоящее время уверенно определяется величина магнитного поля внешнего ядра , то для вычисления энергии магнитного поля на поверхности необходимо значение относительной магнитной проницаемости μ/μo, а её величина может меняться от 1 (при прохождении магнитных силовых линий снаружи земного шара) до 100 (для внутреннего металлического ядра Земли). Следовательно, если использовать разные значения μ/μo, то расчётная энергия магнитного поля может быть в пределах от 1.7 до 170 ТВт. Условно примем среднее значение 86 ТВт. В этом случае полная энергия Земли равна сумме энергии  излучения тепла через поверхность (45 ТВт) и энергии, необходимой для поддержания магнитного поля (86 ТВт), то есть 131 ТВт.

Недавно при участии 15 университетов США, Западной Европы и Японии была проведена фундаментальная работа по экспериментальному измерению величины теплового потока из недр Земли в атмосферу , вызванного распадом радиоактивных изотопов. Обнаружено, что радиоактивный распад 238U и 232Th даёт суммарный вклад 20 ТВт в тепловой поток планеты. Нейтрино, эмитированные вследствие распада 40K, были ниже предела чувствительности данного эксперимента, но известно, что они дают вклад не более 4 ТВт. Величина радиоактивного распада была определена по точным измерениям потока геонейтрино с помощью прибора Kamioka Liquid Scintillator Antineutrino Detector (Япония) и по имеющимся данным детектора Borexino (Италия) суммарно составляет 24 ТВт.

В фундаментальной монографии  Андерсона «New Theory of the Earth» показано, что только приблизительно 10 ТВт энергии может приходиться на нерадиоактивные источники, такие как охлаждение и дифференциация коры, сжатие (уплотнение) мантии, приливное трение и т.д.

Получается значительное расхождение: внутри Земли генерируется 34 ТВт, а расходуется 131 ТВт.

Значительный дисбаланс (97 ТВт) вызывает серьёзные основания сомневаться, что первичный запас способен обеспечить необходимую добавочную энергию Земли. Разумнее предположить существование иного источника, позволяющего нашей планете находится в одном ряду с другими планетами по соотношению масса – светимость.

Ссылка на основную публикацию