Формулы равномерного и равноускоренного движения

Сложное (составное) движение точки

Часто встречаются случаи, когда точка совершает известное движение относительно некоторого твердого тела. А это тело, в свою очередь, движется относительно неподвижной системы координат. Причем движение точки относительно тела и закон движения тела относительно неподвижной системы координат известны или заданы. Требуется найти кинематические величины (скорость и ускорение) точки относительно неподвижной системы координат.

Такое движение точки называется сложным или составным.

Сложное или составное движение точки
– это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.

Далее, для ясности изложения, будем считать, что подвижная система координат жестко связана с некоторым твердым телом. Мы будем рассматривать движение точки относительно тела (относительное движение) и движение тела относительно неподвижной системы координат (переносное движение).

Относительное движение точки при сложном движении
– это движение точки относительно тела (подвижной системы координат) считая, что тело покоится.
Переносное движение точки при сложном движении
– это движение точки, жестко связанной телом, вызванное движением тела.
Абсолютное движение точки при сложном движении
– это движение точки относительно неподвижной системы координат, вызванное движением тела и движением точки относительно тела.

Сложное движение. Точка движется относительно движущегося тела.

Пусть – неподвижная система координат, – подвижная система координат, жестко связанная с телом. Пусть   – единичные векторы (орты), направленные вдоль осей    подвижной системы координат. Тогда радиус-вектор     точки  в неподвижной системе определяется по формуле:(1)   , где     – радиус-вектор точки   – начала подвижной системы координат, связанной с телом.

Относительная скорость и ускорение

При относительном движении изменяются координаты     точки относительно тела. А векторы     являются постоянными, не зависящими от времени. Дифференцируя (1) по времени, считая     постоянными, получаем формулы для относительной скорости и ускорения:(2)   ;(3)   .

Относительная скорость точки при сложном движении
– это скорость точки при неподвижном положении тела (подвижной системы координат), вызванная движением точки относительно тела.
Относительное ускорение точки при сложном движении
– это ускорение точки при неподвижном положении тела, вызванное движением точки относительно тела.

Переносная скорость и ускорение

При переносном движении изменяются векторы   , определяющие положение тела. Относительные координаты точки   являются постоянными. Дифференцируя (1) по времени, считая постоянными, получаем формулы для переносной скорости и ускорения:(4)   ;(5)   .

Переносная скорость точки при сложном движении
– это скорость точки, жестко связанной с телом, вызванная движением тела.
Переносное ускорение точки при сложном движении
– это ускорение точки, жестко связанной с телом, вызванное движением тела.

Производные по времени от     – это скорость и ускорение начала подвижной системы координат :   ;   .

Найдем формулы для производных по времени от векторов   . Для этого возьмем две произвольные точки твердого тела и . Их скорости связаны соотношением: (см. страницу “Скорость и ускорение точек твердого тела”). Рассмотрим вектор   , проведенный из точки в точку . Тогда . Дифференцируем по времени и применяем предыдущую формулу: . Итак, мы нашли формулу для производной по времени от вектора, соединяющего две точки тела: . Поскольку векторы     жестко связаны с телом, то их производные по времени определяются по этой формуле:(6)   ,   ,   .

Подставляем в (4): . Таким образом, выражение (4) приводит к формуле для скорости точек твердого тела.

Выполняя подобные преобразования над формулой (5), получим формулу для ускорения точек твердого тела: , где     – угловое ускорение тела.

Абсолютная скорость и ускорение

При абсолютном движении изменяются как векторы   , определяющие положение тела, так и относительные координаты точки   .

Абсолютная скорость точки при сложном движении
– это скорость точки в неподвижной системе координат.
Абсолютное ускорение точки при сложном движении
– это ускорение точки в неподвижной системе координат.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Hа рисунке приведены графики зависимости пути и скорости тела от времени. Какой график соответствует равноускоренному движению?

2. Автомобиль, начав двигаться из состояния покоя но прямолинейной дороге, за 10 с приобрел скорость 20 м/с. Чему равно ускорение автомобиля?

1) 200 м/с2 2) 20 м/с2 3) 2 м/с2 4) 0,5 м/с2

3. На рисунках представлены графики зависимости координаты от времени для четырёх тел, движущихся вдоль оси ​\( Оx \)​. У какого из тел в момент времени ​\( t_1 \)​ скорость движения равна нулю?

4. На рисунке представлен график зависимости проекции ускорения от времени для тела, движущегося прямолинейно вдоль оси ​\( Оx \)​.

Равноускоренному движению соответствует участок

1) только ОА 2) только АВ 3) только ОА и ВС 4) только CD

5. При изучении равноускоренного движения измеряли путь, пройденный телом из состояния покоя за последовательные равные промежутки времени (за первую секунду, за вторую секунду и т.д.). Полученные данные приведены в таблице.

Чему равен путь, пройденный телом за третью секунду?

1) 4 м 2) 4,5 м 3) 5 м 4) 9 м

6. На рисунке представлены графики зависимости скорости движения от времени для четырёх тел. Тела движутся по прямой.

Для какого(-их) из тел — 1, 2, 3 или 4 — вектор ускорения направлен противоположно вектору скорости?

1) только 1 2) только 2 3) только 4 4) 3 и 4

7. Используя график зависимости скорости движения тела от времени, определите его ускорение.

1) 1 м/с2 2) -1 м/с2 3) 2 м/с2 4) -2 м/с2

8. При изучении равноускоренного движения измеряли скорость тела в определённые моменты времени. Полученные данные, приведены в таблице. Чему равна скорость тела в момент времени 3 с?

1) 0 м/с 2) 2 м/с 3) 4 м/с 4) 14 м/с

9. На рисунке приведены графики зависимости скорости движения четырёх тел от времени. Ускорение какого из тел равно -1,5 м/с?

1) 1 2) 2 3) 3 4) 4

10. Используя график зависимости скорости движения тела от времени, определите скорость тела в конце 30-й секунды. Считать, что характер движения тела не изменился.

1) 14 м/с 2) 20 м/с 3) 62 м/с 4) 69,5 м/с

11. Два тела движутся по оси ​\( Оx \)​. На рисунке представлены графики зависимости проекции скорости движения тел 1 и 2 от времени.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) В промежутке времени ​\( t_3-t_5 \)​ тело 2 движется равноускоренно. 2) К моменту времени ​\( t_2 \)​ от начала движения тела прошли одинаковые пути. 3) В промежутке времени ​\( 0-t_3 \)​ тело 2 находится в покое. 4) В момент времени ​\( t_5 \)​ тело 1 останавливается. 5) В промежутке времени ​\( t_3-t_4 \)​ ускорение ​\( a_x \)​ тела 1 отрицательно.

12. На рисунке представлен график зависимости проекции скорости от времени для тела, движущегося вдоль оси Ох.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Участок ОА соответствует ускоренному движению тела. 2) Участок АВ соответствует состоянию покоя тела. 3) В момент времени ​\( t_1 \)​ тело имело максимальное по модулю ускорение. 4) Момент времени ​\( t_3 \)​ соответствует остановке тела. 5) В момент времени ​\( t_2 \)​ тело имело максимальное по модулю ускорение.

Часть 2

13. Зависимость координаты от времени для некоторого тела описывается уравнением ​\( x=12t-t^2 \)​. В какой момент времени скорость движения равна нулю?

1.4. Равноускоренное движение

В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно   . Для кинематического описания движения камня систему координат удобно выбрать так, чтобы одна из осей, например ось OY, была направлена параллельно вектору ускорения. Тогда криволинейное движение камня можно представить как сумму двух движений – прямолинейного равноускоренного движения вдоль оси OY и равномерного прямолинейного движения в перпендикулярном направлении, т. е. вдоль оси OX (рис. 1.4.1).

Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.


Рисунок 1.4.1.Проекции векторов скорости и ускорения на координатные оси. ax = 0, ay = –g

При равноускоренном прямолинейном движении скорость тела определяется формулой

В этой формуле υ – скорость тела при t = 0 (начальная скорость), a = const – ускорение. На графике скорости υ (t) эта зависимость имеет вид прямой линии (рис. 1.4.2).


Рисунок 1.4.2.Графики скорости равноускоренного движения

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC:

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна), тем больше ускорение тела.

Для графика I: υ = –2 м/с, a = 1/2 м/с2.

Для графика II: υ = 3 м/с, a = –1/3 м/с2.

Модель.
Скорость и ускорение

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от до некоторого момента t на малые промежутки Δt, получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

Так как υ – υ = at, окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от до t запишется в виде:

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y прибавить перемещение за время t:

Это выражение называют законом равноускоренного движения.

Модель.
Графики равноускоренного движения

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t. Результат записывается в виде

Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ, ускорение a и перемещение s:

Если начальная скорость υ равна нулю, эти формулы принимают вид

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ, υ, s, a, y являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения

Модель.
Равноускоренное движение тела

Главная 
 Онлайн учебники 
 Подготовка по всем предметам онлайн 
 Подготовка к ЕГЭ онлайн

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законамМасса — это мера инертности телаСила — это количественная мера взаимодействия тел.

Второй закон Ньютона:Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F{→} = m⋅a{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона: Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1{→} = -F_2{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело
A (см. рис.).
Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости.

Закон Гука записывают в виде
где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле
где N — сила реакции опоры, µ — коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значенияГравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:Весом телаСила тяжестиНевесомостьюИскусственный спутник ЗемлиПервая космическая скорость

1.3. Основные понятия и законы статики и гидростатики

устойчивое, неустойчивое и безразличное.устойчивое равновесие.неустойчивое положениебезразличноеПлечом силыУсловие равновесия рычага:Давлениемзакон Паскаля:Гидравлический прессA1 = A2.силой Архимедазакон АрхимедажидкпогрУсловие плавания тела

1.4. Законы сохранения

Импульсом телаимпульсом силы.закон сохранения импульсаМеханической работойМощностьэнергией.кинетическую и потенциальную.кинетической энергией.потенциальной энергией.Энергия сжатой пружины:механическую энергию.закон сохранения механической энергии

1.5. Механические колебания и волны

КолебаниямиГармоническими колебаниямиамплитудой колебанийПериодом TЧастотой периодических колебаний-1Математическим маятникомПериод колебаний математического маятникаПериод колебаний груза на пружинеРаспространение колебаний в упругих средах.поперечнойпродольнойДлиной волныЗвуковыми волнами

График зависимости проекции скорости равноускоренного движения от времени

Графики зависимости проекции скорости равноускоренного движения от времени позволяют анализировать и описывать равноускоренное движение. В первую очередь вспомним формулу:

С точки зрения математики такая зависимость называется линейной, а ее график представляет прямую.

На рис. 15 представлены зависимости скорости от времени для трех разных тел. Первое тело начинает движение из состояния покоя (начальная скорость равна нулю). Проекция его ускорения положительна, это значит, что тело разгоняется. Второе тело имеет начальную скорость , проекция ускорения равна нулю. Таким образом, скорость тела не меняется, тело движется равномерно прямолинейно. Третье тело имеет также начальную скорость, проекция ускорения отрицательна, но это совсем не значит, что тело движется в сторону, противоположную движению первого тела. Это значит, что до определенного момента времени (точка на оси) тело тормозит (модуль его скорости падает). После этого момента времени модуль скорости начинает расти, а знак проекции скорости меняется. Данная точка называется точкой поворота.

Рис. 15. Графики зависимости проекции скорости равноускоренного движения от времени

Рассмотрим, как движется первое, второе и третье тело, на примере с машинками.

Первое тело начало свое движение из состояния покоя и постепенно увеличивало свою скорость (автомобиль разгоняется) (рис. 16).

Рис. 16. Моделирование движения первого тела

Смоделировать движение второго тела абсолютно точно не получится, ведь оно двигалось равномерно с постоянной скоростью .

Рис. 17. Моделирование движения второго тела

Сначала модуль скорости движения третьего тела уменьшался, т. е. оно тормозило. После чего в какой-то момент времени модуль скорости начал расти, а знак проекции поменялся. Это значит, что тело начало разгоняться в противоположном направлении.

Рис. 18. Моделирование движения третьего тела

Движение тела, брошенного вертикально вверх, – это еще один вариант моделирования движения третьего тела. Например, подбросим ручку. По мере подъема скорость ручки будет уменьшаться, в верхней точке она будет нулевой. После ручка начнет ускоренно падать, то есть изменит свое направление и будет увеличивать скорость движения.

Рис. 19. Моделирование движения третьего тела. Движение тела, брошенного вертикально вверх

ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями

Формулы, используемые в 9 классе на уроках
«ЗАДАЧИ на Прямолинейное равноускоренное движение».

Время с
Проекция начальной скорости м/с
Проекция мгновенной скорости м/с
Проекция ускорения м/с2
Проекция перемещения м
Координата м

1 мин = 60 с;   1 ч = 3600 с;   1 км = 1000 м;   1 м/с = 3,6 км/ч.

В 7 классе используйте другой конспект — «Задачи на движение с решениями»

Для подготовки к ЕГЭ пользуйтесь «ТЕМАТИЧЕСКИМ ТРЕНИНГОМ»

ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ

Задача № 1.
 Автомобиль, двигаясь с ускорением -0,5 м/с2, уменьшил свою скорость от 54 до 18 км/ч. Сколько времени ему для этого понадобилось?

Задача № 2.
 При подходе к станции поезд начал торможение, имея начальную скорость 90 км/ч и ускорение 0,1 м/с2. Определите тормозной путь поезда, если торможение длилось 1 мин.

Задача № 3.
 По графику проекции скорости определите: 1) начальную скорость тела; 2) время движения тела до остановки; 3) ускорение тела; 4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости; 6) запишите уравнение координаты (начальную координату считайте равной нулю).

Решение:

Задача № 4.
 Движение двух тел задано уравнениями проекции скорости:v1x(t) = 2 + 2tv2x(t) = 6 – 2tВ одной координатной плоскости постройте график проекции скорости каждого тела. Что означает точка пересечения графиков?

Задача № 5.
 Движение тела задано уравнением x(t) = 5 + 10t — 0,5t2.  Определите:  1) начальную координату тела;  2) проекцию скорости тела;  3) проекцию ускорения;  4) вид движения (разгоняется тело или тормозит);  5) запишите уравнение проекции скорости;  6) определите значение координаты и скорости в момент времени t = 4 с.  Сравним уравнение координаты в общем виде с данным уравнением и найдем искомые величины.

Решение:

Задача № 6.
 Вагон движется равноускоренно с ускорением -0,5 м/с2. Начальная скорость вагона равна 54 км/ч. Через сколько времени вагон остановится? Постройте график зависимости скорости от времени.

Задача № 7.
 Самолет, летевший прямолинейно с постоянной скоростью 360 км/ч, стал двигаться с постоянным ускорением 9 м/с2 в течение 10 с в том же направлении. Какой скорости достиг самолет и какое расстояние он пролетел за это время? Чему равна средняя скорость за время 10 с при ускоренном движении?

Задача № 8.
 Трамвай двигался равномерно прямолинейно со скоростью 6 м/с, а в процессе торможения — равноускоренно с ускорением 0,6 м/с2. Определите время торможения и тормозной путь трамвая. Постройте графики скорости v(t) и ускорения a(t).

Задача № 9.
 Тело, имея некоторую начальную скорость, движется равноускоренно. За время t = 2 с тело прошло путь S = 18 м, причём его скорость увеличилась в 5 раз. Найти ускорение и начальную скорость тела.

Задача № 10. (повышенной сложности)
 Прямолинейное движение описывается формулой х = –4 + 2t – t2. Опишите движение, постройте для него графики vx(t), sx(t), l(t).

Задача № 11.
  ОГЭ
 Поезд, идущий со скоростью v = 36 км/ч, начинает двигаться равноускоренно и проходит путь S = 600 м, имея в конце этого участка скорость v = 45 км/ч. Определить ускорение поезда а и время t его ускоренного движения.

Краткое пояснение для решения
ЗАДАЧИ на Прямолинейное равноускоренное движение.

Равноускоренным движением называется такое движение, при котором тело за равные промежутки времени изменяет свою скорость на одну и ту же величину. Движение, при котором скорость равномерно уменьшается, тоже считают равноускоренным (иногда его называют равнозамедленным).

Величины, участвующие в описании равноускоренного движения, почти все векторные. При решении задач формулы записывают обычно через проекции векторов на координатные оси. Если тело движется по горизонтали, ось обозначают буквой х, если по вертикали — буквой у.

Если векторы скорости и ускорения сонаправлены (их проекции имеют одинаковые знаки), тело разгоняется, т. е. его скорость увеличивается. Если же векторы скорости и ускорения противоположно направлены, тело тормозит.

Это конспект по теме «ЗАДАЧИ на Прямолинейное равноускоренное движение с решениями». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Свободное падение тел с решениями
  • Посмотреть конспект по теме КИНЕМАТИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике (онлайн-тесты).

Задача 1

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: ; .

Найти: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью  (см. рис. 10). Точка A – точка касания обода горизонтальной поверхности, точкаB – наивысшая точка в начальный момент времени. Точка A будет перемещаться по траектории, которая обозначена жёлтым цветом, она называется циклоидой. Эта точка вновь коснётся поверхности, пройдя путь, равный длине траектории: .

Скорость точки A относительно горизонтальной поверхности при движении обода без проскальзывания равна нулю. Это объясняется тем, что она движется вместе с ободом по горизонтали со скоростью  и относительно центра обода совершает движение по окружности со скоростью . В точке A эти скорости будут противонаправлены: . Следовательно, скорость движения по окружности и скорость движения центра обода равны: .

Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется  равномерно: .

Тогда для точки  получается следующее соотношение: , где r – искомый радиус.

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

Перемещение при равноускоренном движении

Вспомним основные определения прошлого урока:

— равноускоренным называют такое движение, при котором тело за любые равные промежутки времени изменяет свою скорость на одинаковую величину;

— ускорением называют отношение изменения скорости тела ко времени, за которое это изменение произошло;

— закон изменения скорости от времени и проекции скорости от времени для равноускоренного движения:

(t) =  + t

(t) = V0x + axt

Если мы знаем закон, по которому меняется скорость со временем либо проекция скорости со временем при равноускоренном движении, как же нам получить закон, по которому меняется проекция перемещения со временем? Для этого вспомним, какой вид имеет график зависимости проекции скорости от времени при равноускоренном и равномерном движении (Рис. 1):

Рис. 1. Графики зависимости скорости от времени при равноускоренном и равномерном прямолинейном движениях (Источник)

При равноускоренном движении график имеет вид прямой линии, уходящей вверх, так как его проекция ускорения больше нуля.

При равномерном прямолинейном движении площадь численно будет равна модулю проекции перемещения тела. Оказывается, этот факт можно обобщить для случая не только равномерного движения, но и для любого движения, то есть показать, что площадь под графиком численно равна модулю проекции перемещения. Это делается строго математически, но мы воспользуемся графическим способом.

Рис. 2. График зависимости скорости от времени при равноускоренном движении (Источник)

Разобьем график проекции скорости от времени для равноускоренного движения на небольшие промежутки времени Δt. Предположим, что они так малы, что на их протяжении скорость практически не менялась, то есть график линейной зависимости на рисунке мы условно превратим в лесенку. На каждой ее ступеньке мы считаем, что скорость практически не поменялась. Представим, что промежутки времени Δt мы сделаем бесконечно малыми. В математике говорят: совершаем предельный переход. В этом случае площадь такой лесенки будет неограниченно близко совпадать с площадью трапеции, которую ограничивает график Vx (t). А это значит, что и для случая равноускоренного движения можно сказать, что модуль проекции перемещения численно равен площади, ограниченной графиком Vx (t): осями абсцисс и ординат и перпендикуляром, опущенным на ось абсцисс, то есть площади трапеции ОАВС, которую мы видим на рисунке 2.

Задача из физической превращается в математическую задачу – поиск площади трапеции. Это стандартная ситуация, когда ученые физики составляют модель, которая описывает то или иное явление, а затем в дело вступает математика, которая обогащает эту модель уравнениями, законами – тем, что превращает модель в теорию.

Находим площадь трапеции: трапеция является прямоугольной, так как угол между осями – 90, разобьем трапецию на две фигуры – прямоугольник и треугольник. Очевидно, что общая площадь будет равна сумме площадей этих фигур (рис. 3). Найдем их площади: площадь прямоугольника равна произведению сторон, то есть V0x · t, площадь прямоугольного треугольника будет равна половине произведения катетов – 1/2АD·BD, подставив значения проекций, получим: 1/2t·( Vx — V0x), а, вспомнив закон изменения скорости от времени при равноускоренном движении: Vx (t) = V0x + ахt, совершенно очевидно, что разность проекций скоростей равна произведению проекции ускорения ах на время t, то есть Vx — V0x= ахt.

Рис. 3. Определение площади трапеции (Источник)

Учитывая тот факт, что площадь трапеции численно равна модулю проекции перемещения, получим:

Sх(t) = Vxt + ахt2/2

Мы с вами получили закон зависимости проекции перемещения от времени при равноускоренном движении в скалярной форме, в векторной форме он будет выглядеть так:

(t) = t +  t2 / 2

Ссылка на основную публикацию