Презентация по физике на тему «специальная теория относительности»

Четырехмерный мир.

Человек существует не в трехмерном пространственном мире, а в четырехмерном мире событий (под событием понимается физическое явление в данной точке пространства в данный момент времени). Событие характеризуется заданием трех пространственных координат и одной временнóй. Таким образом, у всякого события – четыре координаты: (t; x, y, z). Здесь x, y, z – пространственные координаты (например, декартовы). Чтобы определить координаты события, следует задать (или иметь возможность задать): 1) начало отсчета координат; 2) заполняющую все пространство бесконечную жесткую решетку взаимно перпендикулярных стержней единичной длины; далее, следует: 3) поместить в каждом узле решетки тождественные часы (т.е. прибор, способный отсчитывать равные промежутки времени; конкретное устройство не имеет значения); 4) синхронизировать часы. Тогда любая точка в пространстве, находящаяся вблизи узла решетки, имеет в качестве пространственных координат число узлов по каждой из осей от начала координат и временную координату, равную показаниям часов в ближайшем узле. Все точки с четырьмя координатами заполняют четырехмерное пространство, называемое пространством-временем. Ключевым для физики является вопрос о геометрии этого пространства.

Для описания событий в пространстве-времени удобно использовать пространственно-временные диаграммы, на которых изображается последовательность событий для данного тела. Если (для иллюстрации) ограничиться двумерным (x,t)-пространством, то типичная простпанственно- временнáя диаграмма событий в классической физике выглядит так, как показано на рис. 1.

Горизонтальная ось x соответствует всем трем пространственным координатам (x, y, z), вертикальная – времени t, причем направление из «прошлого» в «будущее» отвечает движению снизу вверх по оси t.

Любая точка на горизонтальной прямой, пересекающей ось t ниже нуля, отвечает положению какого-то объекта в пространстве в момент времени (в прошлом относительно произвольно выбранного момента времени t = 0). Так, на рис. 1 тело находилось в точке А1 пространства в момент времени t1. Точки горизонтальной прямой, совпадающие с осью x, изображают пространственное положение тел в данный момент времени t = 0 (точка А0). Прямая, проведенная выше оси x, соответствует положению тел в будущем (точка А2 – положение, которое займет тело в момент времени t2). Если соединить точки А1, A0, A2, получится мировая линиятела. Очевидно, положение тела в пространстве не меняется (пространственные координаты остаются постоянными), так что эта мировая линия изображает покоящееся тело.

Если мировая линия – прямая, наклоненная под определенным углом (прямая В1В0В2 на рис. 1), это означает, что тело движется с постоянной скоростью. Чем меньше угол между мировой линией и горизонтальной плоскостью, тем больше скорость движения тела. В рамках классической физики наклон мировой линии может быть любым, так как скорость тела ничем не ограничена.

Это утверждение об отсутствии предела скорости движения тел неявно содержится в механике Ньютона. Оно позволяет придать смысл понятию одновременности событий без ссылок на конкретного наблюдателя. Действительно, двигаясь с конечной скоростью, из любой точки С0 на поверхности равного времени можно попасть в точку С1, соответствующую более позднему времени. Можно из более ранней точки С2 попасть в точку С0. Однако невозможно, двигаясь с конечной скоростью, перейти из точки С0 в любые точки А, В,… на той же поверхности. Все события на этой поверхности одновременны (рис. 2). Можно выразиться иначе. Пусть в каждой точке трехмерного пространства находятся одинаковые часы. Возможность передавать сигналы с бесконечно большой скоростью означает, что можно одновременно синхронизовать все часы, на каком бы расстоянии друг от друга они ни находились и с какой бы скоростью при этом ни двигались (действительно, сигнал точного времени доходит до всех часов мгновенно). Иными словами, в рамках классической механики ход часов не зависит от того, движутся они или нет.

Создание СТО[править]

Предпосылкой к созданию теории относительности явилось развитие в XIX веке электродинамики. Результатом обобщения и теоретического осмысления экспериментальных фактов и закономерностей в областях электричества и магнетизма стали уравнения Максвелла, описывающие все проявления электромагнитного поля и его взаимодействие с зарядами и токами.

Другим следствием развития электродинамики стал переход от ньютоновской концепции дальнодействия, согласно которой взаимодействующие на расстоянии тела воздействуют друг на друга через разделяющую их пустоту, причём взаимодействие осуществляется с бесконечной скоростью, т.е. «мгновенно», к концепции близкодействия, предложенной Майклом Фарадеем, в которой взаимодействие передаётся с помощью промежуточных агентов – полей, заполняющих пространство – и при этом встал вопрос о скоростях распространения как взаимодействий, переносимых полями, так и самих полей. Скорость распространения электромагнитного поля в пустоте вытекала из уравнений Максвелла и оказалась постоянной и равной скорости света.

В связи с этим появляется новый вопрос – относительно чего постоянна скорость света? В максвелловой электродинамике скорость распространения электромагнитных волн (при условии измерения этой скорости с помощью электромагнитных часов и положения часов с помощью света) оказалась не зависящей от скоростей движения как источника этих волн, так и наблюдателя. Аналогичной оказалась и ситуация с магнитостатическими решениями, вытекающими из уравнений Максвелла: статические магнитные поля и силы Лоренца, действующие на движущиеся в магнитных полях заряды, зависят от скоростей зарядов по отношению к наблюдателю, т.е. уравнения Максвелла оказались неинвариантными относительно принципа относительности и преобразований Галилея – что противоречило ньютоновской концепции абсолютного пространства классической механики.

Специальная теория относительности была разработана в конце IXX – начале XX века усилиями Г. А. Лоренца, А. Пуанкаре, Лармора и А. Эйнштейна, и затем представлена Минковским в четырёхмерном формализме, объединяющем пространство и время. Вопрос приоритета в создании СТО имеет дискуссионный характер: основные положения и полный математический аппарат теории, включая групповые свойства преобразований Лоренца, в абстрактной форме были впервые сформулированы А. Пуанкаре в работе 1905 г. «О динамике электрона» на основе предшествующих результатов Г. А. Лоренца, а явный абстрактный вывод базиса теории — преобразований Лоренца, из минимума исходных постулатов был дан А. Эйнштейном в практически одновременной работе 1905 г. «К электродинамике движущихся сред». Однако Лармор ещё в 1897 г., до работы Лоренца 1899 г., приходит к преобразованиям Лоренца. Он также даёт релятивистскую формулу сложения скоростей (смотри Larmor J.J., 1900).

Опыт Майкельсонаправить

Основная статья: Опыт Майкельсона

Основой для создания СТО и предшествующих теорий послужил опыт Майкельсона, который дал результат измерения, неожиданный для классической физики своего времени. Попытка проинтерпретировать этот результат в начале XX века вылилась в пересмотр классических представлений механики, и создание Лоренцом, Пуанкаре и Эйнштейном релятивистских физических теорий.

Однако в своих опытах Майкельсон и др. допустили грубую ошибку. Они пытались определить разность скорости распространения эл. магнитного поля при том, что скорость его распространения в однородной среде постоянна.

Связь между энергией и массой

А. Эйнштейн установил основную формулу, связывающую энергию, импульс и массу движущегося тела:

В эту формулу входят релятивистские энергия и импульс.

Из основной формулы следует связь массы тела с его энергией покоя E:

Эту формулу можно записать и в обратную сторону:

Эта формула позволяет перевести изменения энергии взаимодействующих тел при нагревании, химических реакциях или радиоактивных превращениях в эквивалентное изменение массы тел. Так как коэффициент 1/с2 очень мал, то заметные изменения массы возможны лишь при очень больших изменениях энергии. При химических реакциях или при нагревании тел в обычных условиях изменения энергии невелики, поэтому изменение массы обнаружить не удается.

В 1905 г. Эйнштейн опубликовал статью под названием «Зависит ли инерция тела от содержащейся в нем энергии?». В ней он пророчески заключил: «Не исключена возможность того, что теорию удастся проверить для веществ, энергия которых меняется в большой степени (например, для солей радия)». При превращениях атомных ядер и элементарных частиц изменения энергии оказываются весьма большими. Соответственно велики и эквивалентные изменения массы.

Лучшим примером может служить наше Солнце. В его центре происходят термоядерные реакции синтеза водорода с образованием гелия. При этом выделяется колоссальная энергия, малая доля которой дает нам жизнь. По формуле Эйнштейна об эквивалентности массы и энергии можно вычислить, какая часть массы Солнца ежесекундно превращается в излучение, и дать прогноз, что запасов термоядерного топлива на Солнце хватит еще примерно на 10 млрд. лет.

Задача 2. Вычислите энергию покоя электрона.

Задача 3. Общая мощность излучения Солнца составляет около 3,8×1026 Вт. На сколько уменьшается масса Солнца в 1 с?

Задача 4. На сколько увеличится масса воды в озере объемом 106 м3 при ее нагревании на 22 К?

Н. А. Кормаков. Теория относительности. 11-й класс. Базовый курс. Пособие для учащихся

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также что правило сложения скоростей (имевшее в механике Ньютона простой арифметический вид) должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.

Если коротко

Итак, при приближении к скорости света время расширяется, пространство сжимается. Но происходит всё это только в глазах наблюдателя, который видит движение объекта относительно себя. Для астронавта в корабле ничего не меняется (кроме увеличения массы). Но при этом обе точки зрения верны. Поэтому теория относительности и носит такое название.

Все ещё не очень ясно? Неудивительно, ведь самому Эйнштейну потребовалось 10 лет, чтобы сформировать основные постулаты теории относительности. Есть книга, которая поможет вам ещё раз уложить эти принципы в голове и объяснит всё буквально на пальцах, с яркими картинками и доступными графиками. «Теория относительности» от редакции «Аванта» издательства АСТ адресована школьникам средних классов, но будет интересна любому взрослому, желающему проникнуть в тайны нашей Вселенной. Ведь то, что кажется чудесами, на самом деле реальность!

8.2 Расчетные характеристики жесткости диафрагм из профилированного настила

8.2.1 Жесткость диафрагмы из профилированного
настила характеризуется величиной сдвигающей силы, вызывающей единичное
смещение рассматриваемого прямоугольного участка настила по линии ее действия.
Эта жесткость называется сдвиговой, обозначается С и имеет размерность
Н/мм (рисунок ).

Рисунок 14 — К расчету параметров жесткости диафрагм
(а) и поперечной рамы (б)

8.2.2 Расчетная сдвиговая жесткость
профилированного настила определяется при следующих допущениях:

а) значение С изменяется прямо
пропорционально расчетной длине рассматриваемого участка настила, параллельной
направлению сдвигающей силы, и обратно пропорционально его ширине;

б) сдвиговая жесткость настила не зависит
от направления действия сдвигающей силы (вдоль или поперек гофров);

в) настил, прогоны и их соединения
работают упруго при одновременном и раздельном действии сдвигающих сил в
плоскости диафрагм и вертикальных нагрузок на покрытие;

г) поперечная нагрузка на настил не влияет
на его сдвигающую жесткость.

8.2.3 Сдвиговую жесткость участка настила
рекомендуется рассчитывать по формуле

                                ()

где Сo — сдвиговая жесткость прямоугольной и панели-эталона из
профилированных листов рассматриваемого настила (приложение , таблица );

boи αo — соответственно
ширина и длина эталонных панелей, на которые разбивается рассматриваемый
участок диафрагм;

αи
b
— расчетные размеры рассматриваемого участка настила,
параллельные сторонам панели-эталона αo и bo соответственно;

Кo— коэффициент, учитывающий тип опорных креплений настила;

γo — коэффициент, учитывающий характер сдвигающей силы: при ветровых
нагрузках γo = 1,0; при крановых и сейсмических нагрузках — γo = 0,8;

βo — коэффициент, учитывающий конструкцию покрытия и принимаемый по
таблице .

Таблица 14 — Значения коэффициентов βo

Схема работы настила

Условия закрепления прогона на опорах

βo

Беспрогонная

разрезная

1,0

неразрезная

1,2

С прогонами

разрезная

шарнирное
опирание

0,7

закрепление
препятствует кручению

0,9

неразрезная

шарнирное
опирание

0,8

закрепление
препятствует кручению

1,0

Отношения специальной теории относительности с другими физическими понятиями[править]

Гравитацияправить

Основная статья: Гравитация

Для учёта влияния гравитации и электромагнитного поля на результаты измерений вначале была разработана теория ОТО как особое расширение теории относительности, в котором допускается кривизна пространства-времени. Следующим шагом стало включение специальной и общей относительности в метрическую теорию относительности (МТО).

Тем не менее, динамика даже в рамках СТО может учитывать гравитационное взаимодействие, пока потенциал гравитационного поля много меньше квадрата скорости света \(~c^2\), смотри Лоренц-инвариантная теория гравитации. В некоторых случаях специальная теория относительности перестает работать и в масштабах звёздных и галактических систем, требуя замены на ОТО или МТО. В частности, это необходимо при расчёте явлений в нейтронных звёздах, в ядрах галактик, при попытке распространить теорию относительности на Метагалактику и более крупные объекты.

Классическая механикаправить

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики.
Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела.
Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной скоростью (как должно быть в воображаемой абсолютно твёрдой среде).

Квантовая механикаправить

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является квантовая теория поля. Более того, такое квантовомеханическое явление как спин без привлечения теории относительности не имеет разумного объяснения.
Однако обе эти теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея (см. уравнение Шрёдингера), так и теорий на основе СТО, полностью игнорирующих квантовые эффекты.

Развитие квантовой теории всё ещё продолжается, и многие физики считают, что будущая полная теория ответит на все вопросы, имеющие физический смысл, давая их в пределах как СТО в сочетании с квантовой теорией поля, так и с учётом ОТО. Скорее всего СТО ожидает такая же судьба, как и механику Ньютона — будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является очень отдалённой перспективой, и не все учёные считают, что её построение вообще возможно.

Ничего абсолютного

В Ньютоновой механике звездное время было молчаливо отождествлено с абсолютным временем, а в теории Эйнштейна каждой системе отсчета соответствует свое собственное, «местное» время и нет таких часов, которые отсчитывали бы время для всей Вселенной. Но выводов об относительности времени оказалось недостаточно, чтобы устранить противоречия между электродинамикой и классической механикой. Эта задача была решена, когда пал другой классический бастион — постоянство массы. Эйнштейн ввел изменения в основной закон Ньютона о пропорциональности силы ускорению и получил, что масса неограниченно возрастает при приближении к скорости света. Действительно, ведь из постулатов СТО следует, что скорость, большая скорости света, не имеет физического смысла, а значит, никакая сила не может больше увеличивать скорость тела, уже летящего со скоростью света, то есть в этих условиях сила уже не вызывает ускорения! Чем больше скорость тела, тем труднее его ускорить.

А поскольку коэффициент пропорциональности и есть масса (или инерция), то отсюда следует, что масса тела возрастает при увеличении скорости.

Замечательно, что этот вывод был сделан еще в ту пору, когда не наблюдалось явных противоречий и несоответствий между результатами опытов и законами Ньютона. В обычных условиях изменение массы незначительно, а обнаружить его экспериментально можно лишь при очень больших скоростях, близких к скорости света. Даже для спутника, летящего со скоростью 8 км/с, поправка к массе составит не более одной двухмиллиардной. Но уже в 1906 году выводы СТО нашли свое подтверждение при исследовании электронов, движущихся с большими скоростями: в опытах Кауфмана было зафиксировано изменение массы этих частиц. А на современных ускорителях разогнать частицы просто не получится, если провести расчеты классическим способом без учета специальной теории относительности.

Но дальше оказалось, что непостоянство массы позволяет сделать еще более фундаментальное заключение. При увеличении скорости растет масса, растет энергия движения… Не одно ли это и то же? Математические выкладки подтвердили догадку об эквивалентности массы и энергии, и в 1907 году Эйнштейн получил свою знаменитую формулу E = mc2. Это и есть главный вывод СТО. Масса и энергия представляют собой одно и то же и преобразуются друг в друга! И если какое-нибудь тело (например, атом урана) вдруг распадается на два, которые в сумме имеют меньшую массу, то остаток массы переходит в энергию движения. Сам Эйнштейн предполагал, что заметить изменение массы можно будет лишь при огромных выделениях энергии, поскольку коэффициент c2 в полученной им формуле очень и очень велик. Но и он, вероятно, не ожидал, что эти теоретические рассуждения заведут человечество так далеко. Создание атомной бомбы подтвердило справедливость специальной теории относительности, только уж слишком дорогой ценой.

Казалось бы, нет оснований сомневаться в правильности теории. Но тут впору вспомнить слова Эйнштейна: «Опыт никогда не скажет теории «да», но говорит в лучшем случае «может быть», большей же частью — просто «нет». Последний, самый точный эксперимент по проверке одного из постулатов СТО, постоянства скорости света, был проведен совсем недавно, в 2001 году, в Университете города Констанц (Германия). Стоячую лазерную волну помещали в «коробочку» из сверхчистого сапфира, охлажденную до температуры жидкого гелия, и в течение полугода следили за изменением частоты света. Если бы скорость света зависела от скорости движения лаборатории, то и частота этой волны менялась бы при движении Земли по орбите. Но никаких изменений заметить пока не удалось.

Следствия теории относительности

Что же следует из описанных выше принципов и как они связаны со временем и пространством? Теория относительности имеет три основных следствия: пространство расширяется, время сжимается, масса увеличивается. Разберёмся с каждым по порядку.

Время сжимается

Эйнштейн первым понял, что время не абсолютно и зависит от системы отсчёта, в которой мы его наблюдаем. Земля и далёкая галактика на другом конце Вселенной находятся в разных точках не только пространства, но и времени.

Относительно движущихся объектов время идёт медленнее. Этот факт был проверен Around-the-World Atomic Clocks: Predicted Relativistic Time Gains с использованием двух одинаковых атомных часов: один прибор оставили на Земле, а другой отправили на сверхзвуковом самолёте вокруг планеты. При посадке было отмечено, что часы, которые летали, на несколько тысячных секунды отстают от часов в состоянии покоя.

Чем ближе скорость объекта становится к скорости света, тем медленнее для него течёт время. В теории, если астронавт отправится в путешествие на космическом корабле со скоростью, близкой к скорости света, он попадёт в будущее. Для него пройдёт несколько недель, а на Земле — несколько десятилетий. Это и есть относительность времени.

Пространство сжимается

Ещё одно удивительное следствие относительности: когда мы видим объект в движении, то можем наблюдать, что он становится всё более коротким с увеличением его скорости. С точки зрения наблюдателя, при приближении к скорости света объект становится всё короче и короче по направлению движения, а перпендикулярно ему остаётся в прежних размерах.

Допустим, мы сажаем астронавта в космический корабль, который может двигаться со скоростью света, а сами отправляемся в уютную обсерваторию наблюдать за его путешествием. По мере приближения к скорости света с кораблём начнёт происходить что-то странное. Мы заметим, что он становится всё короче. Но изменения происходят только в отношении направления движения, ширина корабля остаётся постоянной. Достигнув скорости света, он станет практически неразличим в длину.

Наверное, нашему астронавту сейчас не очень весело? Не беспокойтесь за него: для астронавта никаких изменений не происходит. Он всё так же радостно несётся навстречу космическим просторам и ничего не замечает. Пространство сжимается только относительно наблюдателя.

Масса увеличивается

Ещё одним поразительным следствием относительности является то, что по мере увеличения скорости объекта его масса тоже увеличивается.

Масса и энергия неразрывно связаны. Именно это выразил Эйнштейн в знаменитом уравнении E = mc². Эта формула показывает, что энергия тела пропорциональна его массе. При передаче телу энергии (то есть его ускорении) увеличивается и масса. Выходит, что часть энергии идёт на увеличение скорости, а другая часть увеличивает массу.

Вспомним о нашем астронавте, который приближается к скорости света в своём корабле. Наблюдая с Земли, мы видим, что по мере увеличения скорости корабля становится всё труднее ускорить его, то есть всё больше и больше энергии требуется, чтобы его подтолкнуть. Наступает момент, когда корабль достигнет такой массы, что никакая энергия во Вселенной больше не сможет его двигать. Вот поэтому на практике путешествия во времени пока невозможны.

8.1 Общие положения

8.1.1 При проектировании легких металлических
конструкций одноэтажных производственных зданий с уклоном кровли не более 10°
стальной профилированный настил покрытия, кроме основных функций ограждающей
конструкции, выполняет функцию горизонтальных связей на отдельных участках
покрытия, называемых диафрагмами жесткости.

8.1.2 Диафрагмы жесткости должны воспринимать
приходящуюся на них часть расчетных горизонтальных нагрузок, действующих на
здание в продольном и поперечном направлениях и заменять (частично или
полностью) горизонтальные связи покрытия.

Поперечные диафрагмы жесткости
располагаются в крайних шагах стропильных ферм или поперечных рам здания
(отсека) длиной не более 72 м. При длине здания (отсека) более 72 м между
крайними диафрагмами равномерно располагаются промежуточные диафрагмы
аналогичной конструкции через каждые 36 — 60 м.

Продольные диафрагмы жесткости в зданиях с
числом пролетов не более трех располагаются вдоль крайних рядов колонн, в
зданиях с числом пролетов более трех, также и вдоль средних рядов колонн с
таким расчетом, чтобы расстояние между смежными диафрагмами не превышало двух
пролетов.

8.1.3 Размеры поперечных диафрагм жесткости в
плане следует принимать с учетом условия

LB ≥ 1,5,                                                            ()

где Lи В — пролет и ширина диафрагмы соответственно.

Пролет поперечных диафрагм равен пролету
стропильных ферм или поперечных рам, ширина этих диафрагм принимается кратной
шагу стропильных ферм или поперечных рам (рисунок ).

Рисунок 13- Расчетная схема здания (отсека) с продольными и
поперечными диафрагмами

Понятие одновременности событий по Эйнштейну.

В рамках ньютоновской механики все одновременные события лежат в «плоскости» фиксированного времени t, полностью занимая трехмерное пространство (рис. 2). Геометрические соотношения между точками трехмерного пространства подчиняются законам обычной евклидовой геометрии. Таким образом, пространство-время классической механики разделяется на независимые друг от друга пространство и время.

Ключевым для понимания основ СТО является то, что в ней невозможно представить пространство-время независимыми друг от друга. Ход часов в разных точках единого пространства-времени разный и зависит от скорости наблюдателя. Этот удивительный факт основан на том, что сигналы не могут распространяться с бесконечной скоростью, (отказ от дальнодействия).

Следующий мысленный эксперимент позволяет лучше понять смысл понятия одновременности. Пусть у двух противоположных стенок вагона поезда, движущегося с постоянной скоростью v, одновременно произведены вспышки света. Для наблюдателя, находящегося посередине вагона, вспышки света от источников придут одновременно. С точки же зрения внешнего наблюдателя, стоящего на платформе, придет раньше вспышка от того источника, который приближается к наблюдателю. Все эти рассуждения подразумевают, что свет распространяется с конечной скоростью.

Таким образом, если отказаться от дальнодействия, иначе, от возможности передачи сигналов с бесконечно большой скоростью, то понятие одновременности событий становится относительным, зависимым от наблюдателя. В этом изменении взгляда на одновременность – самое фундаментальное отличие СТО от дорелятивистской физики.

Для определения понятия одновременности и синхронизации часов, находящихся в разных пространственных точках, Эйнштейн предложил следующую процедуру. Пусть из точки А посылается очень короткий световой сигнал в вакууме; при отправлении сигнала часы в точке А показывают время t1. Сигнал приходит в точку В в тот момент, когда часы в точке В показывают время t‘. После отражения в точке В сигнал возвращается в точку А, так что в момент прихода часы в А показывают время t2. По определению, часы в А и В синхронизованы, если в точке В часы установлены так, что t‘ = (t1 + t2)/2.

Опыт Майкельсона-Морли

В таком опыте скорость движения системы отсчета должна быть достаточно большой. Близкой к инерциальной можно считать систему отсчета, связанную с Землей. При движении вокруг Солнца Земля пролетает за одну секунду 30 км, при этом из-за большого радиуса орбиты ее траектория отклоняется от прямолинейной траектории всего на три миллиметра. В опыте Майкельсона луч света от источника распространялся в направлении движения Земли и проходил через полупрозрачное зеркало S, расположенное под углом 45° к направлению распространения луча. Зеркало S разделяло один луч на два. Первый луч L1 распространялся в направлении, перпендикулярном движению Земли, до зеркала М1 и от него приходил к наблюдателю. Второй луч распространялся в направлении движения Земли, отражался зеркалом М2, возвращался к зеркалу S и от него к наблюдателю. Пусть расстояния L1 и L2 точно одинаковы. Согласно классической механике из-за движения прибора вместе с Землей со скоростью  время, затрачиваемое первым и вторым лучами на прохождение этих расстояний, было бы различным.

Ссылка на основную публикацию